Switch to: References

Add citations

You must login to add citations.
  1. Frege, Thomae, and Formalism: Shifting Perspectives.Richard Lawrence - 2023 - Journal for the History of Analytical Philosophy 11 (2):1-23.
    Mathematical formalism is the the view that numbers are "signs" and that arithmetic is like a game played with such signs. Frege's colleague Thomae defended formalism using an analogy with chess, and Frege's critique of this analogy has had a major influence on discussions in analytic philosophy about signs, rules, meaning, and mathematics. Here I offer a new interpretation of formalism as defended by Thomae and his predecessors, paying close attention to the mathematical details and historical context. I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Epistemic Significance of Valid Inference – A Model-Theoretic Approach.Constantin C. Brîncuș - 2015 - In Sorin Costreie & Mircea Dumitru (eds.), Meaning and Truth. Pro Universitaria. pp. 11-36.
    The problem analysed in this paper is whether we can gain knowledge by using valid inferences, and how we can explain this process from a model-theoretic perspective. According to the paradox of inference (Cohen & Nagel 1936/1998, 173), it is logically impossible for an inference to be both valid and its conclusion to possess novelty with respect to the premises. I argue in this paper that valid inference has an epistemic significance, i.e., it can be used by an agent to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The geometrical basis of arithmetical knowledge: Frege & Dehaene.Sorin Costreie - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):361-370.
    Frege writes in Numbers and Arithmetic about kindergarten-numbers and “an a priori mode of cognition” that they may have “a geometrical source.” This resembles recent findings on arithmetical cognition. In my paper, I explore this resemblance between Gottlob Frege’s later position concerning the geometrical source of arithmetical knowledge, and some current positions in the literature dedicated to arithmetical cognition, especially that of Stanislas Dehaene. In my analysis, I shall try to mainly see to what extent logicism is compatible with intuitionism.
    Download  
     
    Export citation  
     
    Bookmark