Switch to: References

Add citations

You must login to add citations.
  1. Oppositions in a point.Alexandre Costa-Leite - 2020 - Perspectiva Filosófica 47 (2):113-119.
    Following a previous article (cf. Costa-Leite, A. (2018). Oppositions in a line segment, South American Journal of Logic, 4(1), pp.185-193) in which logical oppositions are defined in a line segment, this article goes one step further and proposes a method defining them using a zero-dimensional object: a point.
    Download  
     
    Export citation  
     
    Bookmark  
  • Paraconsistência, modalidades e cognoscibilidade.Alexandre Costa-Leite - manuscript
    De modo geral, este texto é uma incursão em lógica filosófica e filosofia da lógica. Ele contém reflexões originais acerca dos conceitos de paraconsistência, modalidades e cognoscibilidade e suas possíveis relações. De modo específico, o texto avança em quatro direções principais: inicialmente, uma definição genérica de lógicas não clássicas utilizando a ideia de lógica abstrata é sugerida. Em seguida, é mostrado como técnicas manuais de paraconsistentização de lógicas são usadas para gerar sistemas particulares de lógicas paraconsistentes. Depois, uma definição de (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • End of the square?Fabien Schang - 2018 - South American Journal of Logic 4 (2):485-505.
    It has been recently argued that the well-known square of opposition is a gathering that can be reduced to a one-dimensional figure, an ordered line segment of positive and negative integers [3]. However, one-dimensionality leads to some difficulties once the structure of opposed terms extends to more complex sets. An alternative algebraic semantics is proposed to solve the problem of dimensionality in a systematic way, namely: partition (or bitstring) semantics. Finally, an alternative geometry yields a new and unique pattern of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations