Switch to: References

Add citations

You must login to add citations.
  1. On VC-Density in VC-Minimal Theories.Vincent Guingona - 2022 - Notre Dame Journal of Formal Logic 63 (3):395-413.
    We show that any formula with two free variables in a Vapnik–Chervonenkis (VC) minimal theory has VC-codensity at most 2. Modifying the argument slightly, we give a new proof of the fact that, in a VC-minimal theory where acleq= dcleq, the VC-codensity of a formula is at most the number of free variables (from the work of Aschenbrenner et al., the author, and Laskowski).
    Download  
     
    Export citation  
     
    Bookmark  
  • Residue Field Domination in Real Closed Valued Fields.Clifton Ealy, Deirdre Haskell & Jana Maříková - 2019 - Notre Dame Journal of Formal Logic 60 (3):333-351.
    We define a notion of residue field domination for valued fields which generalizes stable domination in algebraically closed valued fields. We prove that a real closed valued field is dominated by the sorts internal to the residue field, over the value group, both in the pure field and in the geometric sorts. These results characterize forking and þ-forking in real closed valued fields (and also algebraically closed valued fields). We lay some groundwork for extending these results to a power-bounded T-convex (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dp-minimality: Invariant types and dp-rank.Pierre Simon - 2014 - Journal of Symbolic Logic 79 (4):1025-1045.
    This paper has two parts. In the first one, we prove that an invariant dp-minimal type is either finitely satisfiable or definable. We also prove that a definable version of the -theorem holds in dp-minimal theories of small or medium directionality.In the second part, we study dp-rank in dp-minimal theories and show that it enjoys many nice properties. It is continuous, definable in families and it can be characterised geometrically with no mention of indiscernible sequences. In particular, if the structure (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On VC-minimal fields and dp-smallness.Vincent Guingona - 2014 - Archive for Mathematical Logic 53 (5-6):503-517.
    In this paper, we show that VC-minimal ordered fields are real closed. We introduce a notion, strictly between convexly orderable and dp-minimal, that we call dp-small, and show that this is enough to characterize many algebraic theories. For example, dp-small ordered groups are abelian divisible and dp-small ordered fields are real closed.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On forking and definability of types in some dp-minimal theories.Pierre Simon & Sergei Starchenko - 2014 - Journal of Symbolic Logic 79 (4):1020-1024.
    We prove in particular that, in a large class of dp-minimal theories including the p-adics, definable types are dense amongst nonforking types.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Definable groups in models of Presburger Arithmetic.Alf Onshuus & Mariana Vicaría - 2020 - Annals of Pure and Applied Logic 171 (6):102795.
    This paper is devoted to understand groups definable in Presburger Arithmetic. We prove the following theorems: Theorem 1. Every group definable in a model of Presburger Arithmetic is abelian-by-finite. Theorem 2. Every bounded abelian group definable in a model of (Z, +, <) Presburger Arithmetic is definably isomorphic to (Z, +)^n mod out by a lattice.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantifier elimination for o-minimal structures expanded by a valuational cut.Clifton F. Ealy & Jana Maříková - 2023 - Annals of Pure and Applied Logic 174 (2):103206.
    Download  
     
    Export citation  
     
    Bookmark