Switch to: References

Add citations

You must login to add citations.
  1. History and nature of the Jeffreys–Lindley paradox.Eric-Jan Wagenmakers & Alexander Ly - 2023 - Archive for History of Exact Sciences 77 (1):25-72.
    The Jeffreys–Lindley paradox exposes a rift between Bayesian and frequentist hypothesis testing that strikes at the heart of statistical inference. Contrary to what most current literature suggests, the paradox was central to the Bayesian testing methodology developed by Sir Harold Jeffreys in the late 1930s. Jeffreys showed that the evidence for a point-null hypothesis $${\mathcal {H}}_0$$ H 0 scales with $$\sqrt{n}$$ n and repeatedly argued that it would, therefore, be mistaken to set a threshold for rejecting $${\mathcal {H}}_0$$ H 0 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Simplified models: a different perspective on models as mediators.C. D. McCoy & Michela Massimi - 2018 - European Journal for Philosophy of Science 8 (1):99-123.
    We introduce a novel point of view on the “models as mediators” framework in order to emphasize certain important epistemological questions about models in science which have so far been little investigated. To illustrate how this perspective can help answer these kinds of questions, we explore the use of simplified models in high energy physics research beyond the Standard Model. We show in detail how the construction of simplified models is grounded in the need to mitigate pressing epistemic problems concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The variety of explanations in the Higgs sector.Michael Stöltzner - 2017 - Synthese 194 (2).
    This paper argues that there is no single universal conception of scientific explanation that is consistently employed throughout the whole domain of Higgs physics—ranging from the successful experimental search for a standard model Higgs particle and the hitherto unsuccessful searches for any particles beyond the standard model, to phenomenological model builders in the Higgs sector and theoretical physicists interested in how the core principles of quantum field theory apply to spontaneous symmetry breaking and the Higgs mechanism. Yet the coexistence of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Underconsideration in Space-time and Particle Physics.J. Brian Pitts - unknown
    The idea that a serious threat to scientific realism comes from unconceived alternatives has been proposed by van Fraassen, Sklar, Stanford and Wray among others. Peter Lipton's critique of this threat from underconsideration is examined briefly in terms of its logic and its applicability to the case of space-time and particle physics. The example of space-time and particle physics indicates a generic heuristic for quantitative sciences for constructing potentially serious cases of underdetermination, involving one-parameter family of rivals T_m that work (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pragmatic warrant for frequentist statistical practice: the case of high energy physics.Kent W. Staley - 2017 - Synthese 194 (2).
    Amidst long-running debates within the field, high energy physics has adopted a statistical methodology that primarily employs standard frequentist techniques such as significance testing and confidence interval estimation, but incorporates Bayesian methods for limited purposes. The discovery of the Higgs boson has drawn increased attention to the statistical methods employed within HEP. Here I argue that the warrant for the practice in HEP of relying primarily on frequentist methods can best be understood as pragmatic, in the sense that statistical methods (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Experimenter’s regress argument, empiricism, and the calibration of the large hadron collider.Slobodan Perovic - 2017 - Synthese 194 (2):313-332.
    H. Collins has challenged the empiricist understanding of experimentation by identifying what he thinks constitutes the experimenter’s regress: an instrument is deemed good because it produces good results, and vice versa. The calibration of an instrument cannot alone validate the results: the regressive circling is broken by an agreement essentially external to experimental procedures. In response, A. Franklin has argued that calibration is a key reasonable strategy physicists use to validate production of results independently of their interpretation. The physicists’ arguments (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations