Switch to: References

Add citations

You must login to add citations.
  1. Generic at.Vincenzo Dimonte - 2018 - Mathematical Logic Quarterly 64 (1-2):118-132.
    In this paper we introduce a generic large cardinal akin to, together with the consequences of being such a generic large cardinal. In this case is Jónsson, and in a choiceless inner model many properties hold that are in contrast with pcf theory in.
    Download  
     
    Export citation  
     
    Bookmark  
  • $$I_0$$ and combinatorics at $$\lambda ^+$$.Nam Trang & Xianghui Shi - 2017 - Archive for Mathematical Logic 56 (1):131-154.
    We investigate the compatibility of $$I_0$$ with various combinatorial principles at $$\lambda ^+$$, which include the existence of $$\lambda ^+$$ -Aronszajn trees, square principles at $$\lambda $$, the existence of good scales at $$\lambda $$, stationary reflections for subsets of $$\lambda ^{+}$$, diamond principles at $$\lambda $$ and the singular cardinal hypothesis at $$\lambda $$. We also discuss whether these principles can hold in $$L(V_{\lambda +1})$$.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • LD-Algebras Beyond I0.Vincenzo Dimonte - 2019 - Notre Dame Journal of Formal Logic 60 (3):395-405.
    The algebra of embeddings at the I3 level has been deeply analyzed, but nothing is known algebra-wise for embeddings above I3. In this article, we introduce an operation for embeddings at the level of I0 and above, and prove that they generate an LD-algebra that can be quite different from the one implied by I3.
    Download  
     
    Export citation  
     
    Bookmark  
  • Controlling the number of normal measures at successor cardinals.Arthur W. Apter - 2022 - Mathematical Logic Quarterly 68 (3):304-309.
    We examine the number of normal measures a successor cardinal can carry, in universes in which the Axiom of Choice is false. When considering successors of singular cardinals, we establish relative consistency results assuming instances of supercompactness, together with the Ultrapower Axiom (introduced by Goldberg in [12]). When considering successors of regular cardinals, we establish relative consistency results only assuming the existence of one measurable cardinal. This allows for equiconsistencies.
    Download  
     
    Export citation  
     
    Bookmark