Switch to: References

Add citations

You must login to add citations.
  1. A covering lemma for L(ℝ).Daniel W. Cunningham - 2002 - Archive for Mathematical Logic 41 (1):49-54.
    Jensen's celebrated Covering Lemma states that if 0# does not exist, then for any uncountable set of ordinals X, there is a Y∈L such that X⊆Y and |X| = |Y|. Working in ZF + AD alone, we establish the following analog: If ℝ# does not exist, then L(ℝ) and V have exactly the same sets of reals and for any set of ordinals X with |X| ≥ΘL(ℝ), there is a Y∈L(ℝ) such that X⊆Y and |X| = |Y|. Here ℝ is (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The fine structure of real mice.Daniel Cunningham - 1998 - Journal of Symbolic Logic 63 (3):937-994.
    Before one can construct scales of minimal complexity in the Real Core Model, K(R), one needs to develop the fine-structure theory of K(R). In this paper, the fine structure theory of mice, first introduced by Dodd and Jensen, is generalized to that of real mice. A relative criterion for mouse iterability is presented together with two theorems concerning the definability of this criterion. The proof of the first theorem requires only fine structure; whereas, the second theorem applies to real mice (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A covering lemma for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K(\mathbb {R})}$$\end{document}. [REVIEW]Daniel W. Cunningham - 2007 - Archive for Mathematical Logic 46 (3-4):197-221.
    The Dodd–Jensen Covering Lemma states that “if there is no inner model with a measurable cardinal, then for any uncountable set of ordinals X, there is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y\in K}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X\subseteq Y}$$\end{document} and |X| = |Y|”. Assuming ZF+AD alone, we establish the following analog: If there is no inner model with an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Is there a set of reals not in K(R)?Daniel W. Cunningham - 1998 - Annals of Pure and Applied Logic 92 (2):161-210.
    We show, using the fine structure of K, that the theory ZF + AD + X R[X K] implies the existence of an inner model of ZF + AD + DC containing a measurable cardinal above its Θ, the supremum of the ordinals which are the surjective image of R. As a corollary, we show that HODK = K for some P K where K is the Dodd-Jensen Core Model relative to P. In conclusion, we show that the theory ZF (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The axiom of determinacy implies dependent choice in mice.Sandra Müller - 2019 - Mathematical Logic Quarterly 65 (3):370-375.
    We show that the Axiom of Dependent Choice,, holds in countably iterable, passive premice constructed over their reals which satisfy the Axiom of Determinacy,, in a background universe. This generalizes an argument of Kechris for using Steel's analysis of scales in mice. In particular, we show that for any and any countable set of reals A so that and, we have that.
    Download  
     
    Export citation  
     
    Bookmark  
  • Inner model operators in L.Mitch Rudominer - 2000 - Annals of Pure and Applied Logic 101 (2-3):147-184.
    An inner model operator is a function M such that given a Turing degree d, M is a countable set of reals, d M, and M has certain closure properties. The notion was introduced by Steel. In the context of AD, we study inner model operators M such that for a.e. d, there is a wellorder of M in L). This is related to the study of mice which are below the minimal inner model with ω Woodin cardinals. As a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Covering Lemma for HOD of K (ℝ).Daniel W. Cunningham - 2010 - Notre Dame Journal of Formal Logic 51 (4):427-442.
    Working in ZF+AD alone, we prove that every set of ordinals with cardinality at least Θ can be covered by a set of ordinals in HOD of K (ℝ) of the same cardinality, when there is no inner model with an ℝ-complete measurable cardinal. Here ℝ is the set of reals and Θ is the supremum of the ordinals which are the surjective image of ℝ.
    Download  
     
    Export citation  
     
    Bookmark  
  • Scales of minimal complexity in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K(\mathbb{R})}$$\end{document}. [REVIEW]Daniel W. Cunningham - 2012 - Archive for Mathematical Logic 51 (3-4):319-351.
    Using a Levy hierarchy and a fine structure theory for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K(\mathbb{R})}$$\end{document}, we obtain scales of minimal complexity in this inner model. Each such scale is obtained assuming the determinacy of only those sets of reals whose complexity is strictly below that of the scale constructed.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strong partition cardinals and determinacy in $${K}$$ K.Daniel W. Cunningham - 2015 - Archive for Mathematical Logic 54 (1-2):173-192.
    We prove within K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K}$$\end{document} that the axiom of determinacy is equivalent to the assertion that for each ordinal λ λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa > \lambda}$$\end{document}. Here Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Theta}$$\end{document} is the supremum of the ordinals which are the surjective image of the set of reals R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document}.
    Download  
     
    Export citation  
     
    Bookmark  
  • On forcing over $$L(\mathbb {R})$$.Daniel W. Cunningham - 2023 - Archive for Mathematical Logic 62 (3):359-367.
    Given that \(L(\mathbb {R})\models {\text {ZF}}+ {\text {AD}}+{\text {DC}}\), we present conditions under which one can generically add new elements to \(L(\mathbb {R})\) and obtain a model of \({\text {ZF}}+ {\text {AD}}+{\text {DC}}\). This work is motivated by the desire to identify the smallest cardinal \(\kappa \) in \(L(\mathbb {R})\) for which one can generically add a new subset \(g\subseteq \kappa \) to \(L(\mathbb {R})\) such that \(L(\mathbb {R})(g)\models {\text {ZF}}+ {\text {AD}}+{\text {DC}}\).
    Download  
     
    Export citation  
     
    Bookmark