Switch to: References

Citations of:

Continuity and Change in Frege's Philosophy of Mathematics

In Leila Haaparanta & Jaakko Hintikka (eds.), Frege Synthesized: Essays on the Philosophical and Foundational Work of Gottlob Frege. Dordrecht, Netherland: Kluwer Academic Publishers. pp. 345--373 (1986)

Add citations

You must login to add citations.
  1. Frege's Approach to the Foundations of Analysis (1874–1903).Matthias Schirn - 2013 - History and Philosophy of Logic 34 (3):266-292.
    The concept of quantity (Größe) plays a key role in Frege's theory of real numbers. Typically enough, he refers to this theory as ?theory of quantity? (?Größenlehre?) in the second volume of his opus magnum Grundgesetze der Arithmetik (Frege 1903). In this essay, I deal, in a critical way, with Frege's treatment of the concept of quantity and his approach to analysis from the beginning of his academic career until Frege 1903. I begin with a few introductory remarks. In Section (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Frege’s Logicism and the Neo-Fregean Project.Matthias Schirn - 2014 - Axiomathes 24 (2):207-243.
    Neo-logicism is, not least in the light of Frege’s logicist programme, an important topic in the current philosophy of mathematics. In this essay, I critically discuss a number of issues that I consider to be relevant for both Frege’s logicism and neo-logicism. I begin with a brief introduction into Wright’s neo-Fregean project and mention the main objections that he faces. In Sect. 2, I discuss the Julius Caesar problem and its possible Fregean and neo-Fregean solution. In Sect. 3, I raise (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege and his groups.Tuomo Aho - 1998 - History and Philosophy of Logic 19 (3):137-151.
    Frege's docent's dissertation Rechnungsmethoden, die sich auf eine Erweiterung des Grössenbegriffes gründen(1874) contains indications of a bold attempt to extend arithmetic. According to it, arithmetic means the science of magnitude, and magnitude must be understood structurally without intuitive support. The main thing is insight into the formal structure of the operation of ?addition?. It turns out that a general ?magnitude domain? coincides with a (commutative) group. This is an interesting connection with simultaneous developments in abstract algebra. As his main application, (...)
    Download  
     
    Export citation  
     
    Bookmark