Switch to: References

Add citations

You must login to add citations.
  1. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A Cauchy-Dirac Delta Function.Mikhail G. Katz & David Tall - 2013 - Foundations of Science 18 (1):107-123.
    The Dirac δ function has solid roots in nineteenth century work in Fourier analysis and singular integrals by Cauchy and others, anticipating Dirac’s discovery by over a century, and illuminating the nature of Cauchy’s infinitesimals and his infinitesimal definition of δ.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus.Alexandre Borovik & Mikhail G. Katz - 2012 - Foundations of Science 17 (3):245-276.
    Cauchy’s contribution to the foundations of analysis is often viewed through the lens of developments that occurred some decades later, namely the formalisation of analysis on the basis of the epsilon-delta doctrine in the context of an Archimedean continuum. What does one see if one refrains from viewing Cauchy as if he had read Weierstrass already? One sees, with Felix Klein, a parallel thread for the development of analysis, in the context of an infinitesimal-enriched continuum. One sees, with Emile Borel, (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Stevin Numbers and Reality.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (2):109-123.
    We explore the potential of Simon Stevin’s numbers, obscured by shifting foundational biases and by 19th century developments in the arithmetisation of analysis.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (1):51-89.
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy’s foundational work associated with the work of Boyer and Grabiner; and to Bishop’s constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Toward a History of Mathematics Focused on Procedures.Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze & David Sherry - 2017 - Foundations of Science 22 (4):763-783.
    Abraham Robinson’s framework for modern infinitesimals was developed half a century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical analysis. Their procedures have been often viewed through the lens of the success of the Weierstrassian foundations. We propose a view without passing through the lens, by means of proxies for such procedures in the modern theory of infinitesimals. The real accomplishments of calculus and analysis had been based primarily on the elaboration of novel techniques for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms.Tiziana Bascelli, Piotr Błaszczyk, Alexandre Borovik, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, David M. Schaps & David Sherry - 2018 - Foundations of Science 23 (2):267-296.
    Cauchy's sum theorem is a prototype of what is today a basic result on the convergence of a series of functions in undergraduate analysis. We seek to interpret Cauchy’s proof, and discuss the related epistemological questions involved in comparing distinct interpretive paradigms. Cauchy’s proof is often interpreted in the modern framework of a Weierstrassian paradigm. We analyze Cauchy’s proof closely and show that it finds closer proxies in a different modern framework.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cauchy's Continuum.Karin U. Katz & Mikhail G. Katz - 2011 - Perspectives on Science 19 (4):426-452.
    One of the most influential scientific treatises in Cauchy's era was J.-L. Lagrange's Mécanique Analytique, the second edition of which came out in 1811, when Cauchy was barely out of his teens. Lagrange opens his treatise with an unequivocal endorsement of infinitesimals. Referring to the system of infinitesimal calculus, Lagrange writes:Lorsqu'on a bien conçu l'esprit de ce système, et qu'on s'est convaincu de l'exactitude de ses résultats par la méthode géométrique des premières et dernières raisons, ou par la méthode analytique (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Ten Misconceptions from the History of Analysis and Their Debunking.Piotr Błaszczyk, Mikhail G. Katz & David Sherry - 2013 - Foundations of Science 18 (1):43-74.
    The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations