Switch to: References

Add citations

You must login to add citations.
  1. Inferential Constants.Camillo Fiore, Federico Pailos & Mariela Rubin - 2022 - Journal of Philosophical Logic 52 (3):767-796.
    A metainference is usually understood as a pair consisting of a collection of inferences, called premises, and a single inference, called conclusion. In the last few years, much attention has been paid to the study of metainferences—and, in particular, to the question of what are the valid metainferences of a given logic. So far, however, this study has been done in quite a poor language. Our usual sequent calculi have no way to represent, e.g. negations, disjunctions or conjunctions of inferences. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Translating Metainferences Into Formulae: Satisfaction Operators and Sequent Calculi.Ariel Jonathan Roffé & Federico Pailos - 2021 - Australasian Journal of Logic 3.
    In this paper, we present a way to translate the metainferences of a mixed metainferential system into formulae of an extended-language system, called its associated σ-system. To do this, the σ-system will contain new operators (one for each standard), called the σ operators, which represent the notions of "belonging to a (given) standard". We first prove, in a model-theoretic way, that these translations preserve (in)validity. That is, that a metainference is valid in the base system if and only if its (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Anti-exceptionalism, truth and the BA-plan.Eduardo Alejandro Barrio, Federico Pailos & Joaquín Toranzo Calderón - 2021 - Synthese 199 (5-6):12561-12586.
    Anti-exceptionalism about logic states that logical theories have no special epistemological status. Such theories are continuous with scientific theories. Contemporary anti-exceptionalists include the semantic paradoxes as a part of the elements to accept a logical theory. Exploring the Buenos Aires Plan, the recent development of the metainferential hierarchy of ST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {ST}}$$\end{document}-logics shows that there are multiple options to deal with such paradoxes. There is a whole ST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Systems for Non-Reflexive Consequence.Carlo Nicolai & Lorenzo Rossi - 2023 - Studia Logica 111 (6):947-977.
    Substructural logics and their application to logical and semantic paradoxes have been extensively studied. In the paper, we study theories of naïve consequence and truth based on a non-reflexive logic. We start by investigating the semantics and the proof-theory of a system based on schematic rules for object-linguistic consequence. We then develop a fully compositional theory of truth and consequence in our non-reflexive framework.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Metainferential Solution to the Semantic Paradoxes.Rea Golan - 2023 - Journal of Philosophical Logic 52 (3):797-820.
    Substructural solutions to the semantic paradoxes have been broadly discussed in recent years. In particular, according to the non-transitive solution, we have to give up the metarule of Cut, whose role is to guarantee that the consequence relation is transitive. This concession—giving up a meta rule—allows us to maintain the entire consequence relation of classical logic. The non-transitive solution has been generalized in recent works into a hierarchy of logics where classicality is maintained at more and more metainferential levels. All (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Hybrid Calculus for the Validities and Invalidities of Classical Propositional Logic.Rea Golan - 2024 - Journal of Philosophical Logic 53 (6):1701-1716.
    I introduce a novel hybrid calculus H for the validities and invalidities of classical propositional logic. The calculus H is different in nature from other hybrid calculi that can be found in the literature in that it does not include specific anti-sequent rules. Instead, I add to the sequent rules of classical propositional logic only two structural rules that allow us to introduce and eliminate anti-sequents in our derivations. The resultant system is much simpler than the existing systems in the (...)
    Download  
     
    Export citation  
     
    Bookmark