Switch to: References

Add citations

You must login to add citations.
  1. Mathematics, Models and Zeno's Paradoxes.Joseph S. Alper & Mark Bridger - 1997 - Synthese 110 (1):143-166.
    A version of nonstandard analysis, Internal Set Theory, has been used to provide a resolution of Zeno's paradoxes of motion. This resolution is inadequate because the application of Internal Set Theory to the paradoxes requires a model of the world that is not in accordance with either experience or intuition. A model of standard mathematics in which the ordinary real numbers are defined in terms of rational intervals does provide a formalism for understanding the paradoxes. This model suggests that in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • An epistemological use of nonstandard analysis to answer Zeno's objections against motion.William I. McLaughlin & Sylvia L. Miller - 1992 - Synthese 92 (3):371 - 384.
    Three of Zeno's objections to motion are answered by utilizing a version of nonstandard analysis, internal set theory, interpreted within an empirical context. Two of the objections are without force because they rely upon infinite sets, which always contain nonstandard real numbers. These numbers are devoid of numerical meaning, and thus one cannot render the judgment that an object is, in fact, located at a point in spacetime for which they would serve as coordinates. The third objection, an arrow never (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations