Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)When champions meet: Rethinking the Bohr–Einstein debate.Nicolaas P. Landsman - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (1):212-242.
    Einstein's philosophy of physics was predicated on his Trennungsprinzip, a combination of separability and locality, without which he believed objectification, and thereby "physical thought" and "physical laws", to be impossible. Bohr's philosophy, on the other hand, was grounded in a seemingly different doctrine about the possibility of objective knowledge, namely the necessity of classical concepts. In fact, it follows from Raggio's Theorem in algebraic quantum theory that - within an appropriate class of physical theories - suitable mathematical translations of the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Wave Function Collapse as an Effect of Field Quantization.K. Lewin - 2009 - Foundations of Physics 39 (10):1145-1160.
    It is pointed out that ordinary quantum mechanics as a classical field theory cannot account for the wave function collapse if it is not seen within the framework of field quantization. That is needed to understand the particle structure of matter during wave function evolution and to explain the collapse as symmetry breakdown by detection. The decay of a two-particle bound s state and the Stern-Gerlach experiment serve as examples. The absence of the nonlocality problem in Bohm’s version of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)When champions meet: Rethinking the Bohr–Einstein debate.Nicolaas P. Landsman - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (1):212-242.
    Einstein's philosophy of physics (as clarified by Fine, Howard, and Held) was predicated on his Trennungsprinzip, a combination of separability and locality, without which he believed objectification, and thereby "physical thought" and "physical laws", to be impossible. Bohr's philosophy (as elucidated by Hooker, Scheibe, Folse, Howard, Held, and others), on the other hand, was grounded in a seemingly different doctrine about the possibility of objective knowledge, namely the necessity of classical concepts. In fact, it follows from Raggio's Theorem in algebraic (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • What Does ‘(Non)-absoluteness of Observed Events’ Mean?Emily Adlam - 2024 - Foundations of Physics 54 (1):1-43.
    Recently there have emerged an assortment of theorems relating to the ‘absoluteness of emerged events,’ and these results have sometimes been used to argue that quantum mechanics may involve some kind of metaphysically radical non-absoluteness, such as relationalism or perspectivalism. However, in our view a close examination of these theorems fails to convincingly support such possibilities. In this paper we argue that the Wigner’s friend paradox, the theorem of Bong et al and the theorem of Lawrence et al are all (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Does science need intersubjectivity? The problem of confirmation in orthodox interpretations of quantum mechanics.Emily Adlam - 2022 - Synthese 200 (6):1–39.
    Any successful interpretation of quantum mechanics must explain how our empirical evidence allows us to come to know about quantum mechanics. In this article, we argue that this vital criterion is not met by the class of ‘orthodox interpretations,’ which includes QBism, neo-Copenhagen interpretations, and some versions of relational quantum mechanics. We demonstrate that intersubjectivity fails in radical ways in these approaches, and we explain why intersubjectivity matters for empirical confirmation. We take a detailed look at the way in which (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Do We Have any Viable Solution to the Measurement Problem?Emily Adlam - 2023 - Foundations of Physics 53 (2):1-32.
    Wallace has recently argued that a number of popular approaches to the measurement problem can’t be fully extended to relativistic quantum mechanics and quantum field theory; Wallace thus contends that as things currently stand, only the unitary-only approaches to the measurement problem are viable. However, the unitary-only approaches face serious epistemic problems which may threaten their viability as solutions, and thus we consider that it remains an urgent outstanding problem to find a viable solution to the measurement problem which can (...)
    Download  
     
    Export citation  
     
    Bookmark