Switch to: References

Add citations

You must login to add citations.
  1. Set existence principles and closure conditions: unravelling the standard view of reverse mathematics.Benedict Eastaugh - 2019 - Philosophia Mathematica 27 (2):153-176.
    It is a striking fact from reverse mathematics that almost all theorems of countable and countably representable mathematics are equivalent to just five subsystems of second order arithmetic. The standard view is that the significance of these equivalences lies in the set existence principles that are necessary and sufficient to prove those theorems. In this article I analyse the role of set existence principles in reverse mathematics, and argue that they are best understood as closure conditions on the powerset of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Antibasis theorems for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} classes and the jump hierarchy. [REVIEW]Ahmet Çevik - 2013 - Archive for Mathematical Logic 52 (1-2):137-142.
    We prove two antibasis theorems for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} classes. The first is a jump inversion theorem for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} classes with respect to the global structure of the Turing degrees. For any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P\subseteq 2^\omega}$$\end{document}, define S(P), the degree spectrum of P, to be the set of all Turing degrees a such that there exists \documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Coarse computability, the density metric, Hausdorff distances between Turing degrees, perfect trees, and reverse mathematics.Denis R. Hirschfeldt, Carl G. Jockusch & Paul E. Schupp - 2023 - Journal of Mathematical Logic 24 (2).
    For [Formula: see text], the coarse similarity class of A, denoted by [Formula: see text], is the set of all [Formula: see text] such that the symmetric difference of A and B has asymptotic density 0. There is a natural metric [Formula: see text] on the space [Formula: see text] of coarse similarity classes defined by letting [Formula: see text] be the upper density of the symmetric difference of A and B. We study the metric space of coarse similarity classes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An effectively closed set with no join property.Ahmet Çevik - 2021 - Mathematical Logic Quarterly 67 (3):313-320.
    In this paper, we establish a relationship between the join property and Turing degrees of members of effectively closed sets in Cantor space, i.e., classes. We first give a proof of the observation that there exists a non‐empty special class in which no join of two members computes the halting set. We then prove the existence of a non‐empty special class such that no member satisfies the join property, where a degree satisfies the join property if for all non‐zero there (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Choice classes.Ahmet Çevik - 2016 - Mathematical Logic Quarterly 62 (6):563-574.
    Download  
     
    Export citation  
     
    Bookmark   1 citation