Switch to: References

Add citations

You must login to add citations.
  1. Phenomenology, Perspectivalism and (Quantum) Physics.Steven French - 2024 - Foundations of Physics 54 (3):1-18.
    It has been claimed that Massimi’s recent perspectival approach to science sits in tension with a realist stance. I shall argue that this tension can be defused in the quantum context by recasting Massimi’s perspectivalism within a phenomenological framework. I shall begin by indicating how the different but complementary forms of the former are manifested in the distinction between certain so-called ‘-epistemic’ and ‘-ontic’ understandings of quantum mechanics, namely QBism and Relational Quantum Mechanics, respectively. A brief consideration of Dieks’ perspectivism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Perspectival Quantum Realism.Dennis Dieks - 2022 - Foundations of Physics 52 (4):1-20.
    The theories of pre-quantum physics are standardly seen as representing physical systems and their properties. Quantum mechanics in its standard form is a more problematic case: here, interpretational problems have led to doubts about the tenability of realist views. Thus, QBists and Quantum Pragmatists maintain that quantum mechanics should not be thought of as representing physical systems, but rather as an agent-centered tool for updating beliefs about such systems. It is part and parcel of such views that different agents may (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fragmental Presentism and Quantum Mechanics.Paul Merriam - 2021
    This paper develops a Fragmentalist theory of Presentism and shows how it can help to develop a interpretation of quantum mechanics. There are several fragmental interpretations of physics. In the interpretation of this paper, each quantum system forms a fragment, and fragment f1 makes a measurement on fragment f2 if and only if f2 makes a corresponding measurement on f1. The main idea is then that each fragment has its own present (or ‘now’) until a mutual quantum measurement—at which time (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • QBism and the limits of scientific realism.David Glick - 2021 - European Journal for Philosophy of Science 11 (2):1-19.
    QBism is an agent-centered interpretation of quantum theory. It rejects the notion that quantum theory provides a God’s eye description of reality and claims instead that it imposes constraints on agents’ subjective degrees of belief. QBism’s emphasis on subjective belief has led critics to dismiss it as antirealism or instrumentalism, or even, idealism or solipsism. The aim of this paper is to consider the relation of QBism to scientific realism. I argue that while QBism is an unhappy fit with a (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Non-locality in the AB-time interpretation of quantum mechanics.Paul Merriam - manuscript
    Non-locality is one of the great mysteries of quantum mechanics (qm). There is a new realist interpretation of qm on the table whose notion of time incorporates both of McTaggart's A-series and B-series. In this philosophically motivated interpretation there is no fact of the matter as to whether the 'now' of one system is the 'now' of another system, until measurement. But this reproduces the idea that the spins of a Bell pair of electrons do not become definite 'until' measurement. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Not Just Many Worlds but Many Universes? A Problem for the Many Worlds View of Quantum Mechanics.Peter Baumann - 2022 - Metaphysica 23 (2):295-305.
    The many-worlds view is one of the most discussed “interpretations” of quantum mechanics. As is well known, this view has some very controversial and much discussed aspects. This paper focuses on one particular problem arising from the combination of quantum mechanics with Special Relativity. It turns out that the ontology of the many-worlds view – the account of what there is and what branches of the universe exist – is relative to inertial frames. If one wants to avoid relativizing ontology, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The metaphysics of decoherence.Antonio Vassallo & Davide Romano - 2023 - Erkenntnis 88 (6):2609–2631.
    The paper investigates the type of realism that best suits the framework of decoherence taken at face value without postulating a plurality of worlds, or additional hidden variables, or non-unitary dynamical mechanisms. It is argued that this reading of decoherence leads to an extremely radical type of perspectival realism, especially when cosmological decoherence is considered.
    Download  
     
    Export citation  
     
    Bookmark  
  • Perspectival QM and Presentism: a New Paradigm.Paul Merriam - manuscript
    We motivate and develop a perspectival A-theory of time (future/present/past) and probe its implied interpretation of quantum mechanics. It will emerge that, as a first take, the time of relativity is a B-series (earlier-times to later-times) and the time of quantum mechanics is an A-series. There is philosophical motivation for the idea that mutual quantum measurement happens when and only when the systems’ A-series become one mutual A-series, as in the way qualia work in the Inverted Spectrum. This seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Perspectivalism, A-theorism, and their Interpretation of QM.Paul Merriam - manuscript
    Abstract We motivate and develop an A-theory of time and probe its implied interpretation of quantum mechanics. It will emerge that, as a first take, the time of relativity is a B-series and the time of quantum mechanics is an A-series. There is philosophical motivation for the idea that mutual quantum measurement happens when and only when the systems’ A-series become one mutual A-series. This accounts almost trivially for many quantum phenomena, including that the electrons of a Bell pair do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Identical Quantum Particles as Distinguishable Objects.Dennis Dieks & Andrea Lubberdink - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (3):1-16.
    According to classical physics particles are basic building blocks of the world. These classical particles are distinguishable objects, individuated by unique combinations of physical properties. By contrast, in quantum mechanics the received view is that particles of the same kind are physically indistinguishable from each other and lack identity. This doctrine rests on the quantum mechanical symmetrization postulates together with the “factorist” assumption that each single particle is represented in exactly one factor space of the tensor product Hilbert space of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Modal Interpretations of Quantum Mechanics.Olimpia Lombardi & Dennis Dieks - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Open Problems in Relational Quantum Mechanics.Federico Laudisa - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 50 (2):215-230.
    The Rovelli relational interpretation of quantum mechanics is based on the assumption that the notion of observer-independent state of a physical system is to be rejected. In RQM the primary target of the theory is the analysis of the whole network of relations that may be established among quantum subsystems, and the shift to a relational perspective is supposed to address in a satisfactory way the general problem of the interpretation of quantum mechanics. Here I discuss two basic issues, that (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Unitary quantum theory is incompatible with special relativity.Shan Gao - unknown
    It is shown that the combination of unitary quantum theory and special relativity may lead to a contradiction when considering the EPR correlations in different inertial frames in a Gedankenexperiment. This result seems to imply that either unitary quantum theory is wrong or if unitary quantum theory is right then there must exist a preferred Lorentz frame.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Time’s Direction and Orthodox Quantum Mechanics: Time Symmetry and Measurement.Cristian Lopez - 2022 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (4):421-440.
    It has been argued that measurement-induced collapses in Orthodox Quantum Mechanics generates an intrinsic (or built-in) quantum arrow of time. In this paper, I critically assess this proposal. I begin by distinguishing between an intrinsic and non-intrinsic arrow of time. After presenting the proposal of a collapse-based arrow of time in some detail, I argue, first, that any quantum arrow of time in Orthodox Quantum Mechanics is non-intrinsic since it depends on external information about the measurement context, and second, that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scientific perspectivism in the phenomenological tradition.Philipp Berghofer - 2020 - European Journal for Philosophy of Science 10 (3):1-27.
    In current debates, many philosophers of science have sympathies for the project of introducing a new approach to the scientific realism debate that forges a middle way between traditional forms of scientific realism and anti-realism. One promising approach is perspectivism. Although different proponents of perspectivism differ in their respective characterizations of perspectivism, the common idea is that scientific knowledge is necessarily partial and incomplete. Perspectivism is a new position in current debates but it does have its forerunners. Figures that are (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Modal interpretations of quantum mechanics.Michael Dickson - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Classification Between $$psi$$ ψ -Ontic and $$psi$$ ψ -Epistemic Ontological Models.Andrea Oldofredi & Cristian López - 2020 - Foundations of Physics 50 (11):1315-1345.
    Harrigan and Spekkens provided a categorization of quantum ontological models classifying them as \-ontic or \-epistemic if the quantum state \ describes respectively either a physical reality or mere observers’ knowledge. Moreover, they claimed that Einstein—who was a supporter of the statistical interpretation of quantum mechanics—endorsed an epistemic view of \ In this essay we critically assess such a classification and some of its consequences by proposing a twofold argumentation. Firstly, we show that Harrigan and Spekkens’ categorization implicitly assumes that (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A new objective definition of quantum entanglement as potential coding of intensive and effective relations.Christian de Ronde & Cesar Massri - 2021 - Synthese 198 (7):6661-6688.
    In de Ronde and Massri it was argued against the orthodox definition of quantum entanglement in terms of pure and separable states. In this paper we attempt to discuss how the logos categorical approach to quantum mechanics is able to provide an objective formal account of the notion of entanglement—completely independent of both purity and separability—in terms of the potential coding of intensive relations and effective relations. We will show how our novel redefinition allows us to provide an anschaulich content (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Against Collapses, Purity and Separability Within the Definition of Quantum Entanglement.Christian de Ronde & Massri Cesar - unknown
    In this paper we we will argue against the orthodox definition of quantum entanglement which has been implicitly grounded on several widespread presuppositions which have no relation whatsoever to the formalism of QM. We will show how these presuppositions have been introduced through a naive interpretation of the quantum mathematical structure which assumes dogmatically that the theory talks about "small particles" represented by pure states which suddenly "collapse" when a measurement takes place. In the second part of this paper we (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wigner and his many friends: A new no-go result?Sebastian Fortin & Olimpia Lombardi - unknown
    In April 2016, Daniela Frauchiger and Renato Renner published an article online in which they introduce a Gedankenexperiment that led them to conclude that single-world interpretations of quantum theory cannot be self-consistent. In a new version of the paper, published in September 2018, the authors moderate their original claim by concluding that quantum theory cannot be extrapolated to complex systems, at least not in a straightforward manner. The purpose of this short article is to clarify the core of the F-R (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Logos Categorical Approach to Quantum Mechanics: III. Relational Potential Coding and Quantum Entanglement Beyond Collapses, Pure States and Particle Metaphysics.Christian de Ronde & Cesar Massri - unknown
    In this paper we consider the notion of quantum entanglement from the perspective of the logos categorical approach [26, 27]. Firstly, we will argue that the widespread distinctions, on the one hand, between pure states and mixed states, and on the other, between separable states and entangled states, are completely superfluous when considering the orthodox mathematical formalism of QM. We will then argue that the introduction of these distinctions within the theory of quanta is due to another two completely unjustified (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation