Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)2008–2009 Winter Meeting of the Association for Symbolic Logic.Ali Enayat & Barbara F. Csima - 2009 - Bulletin of Symbolic Logic 15 (2):237.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Cohesive Powers of Linear Orders.Rumen Dimitrov, Valentina Harizanov, Andrey Morozov, Paul Shafer, Alexandra A. Soskova & Stefan V. Vatev - 2023 - Journal of Symbolic Logic 88 (3):947-1004.
    Cohesive powersof computable structures are effective analogs of ultrapowers, where cohesive sets play the role of ultrafilters. Let$\omega $,$\zeta $, and$\eta $denote the respective order-types of the natural numbers, the integers, and the rationals when thought of as linear orders. We investigate the cohesive powers of computable linear orders, with special emphasis on computable copies of$\omega $. If$\mathcal {L}$is a computable copy of$\omega $that is computably isomorphic to the usual presentation of$\omega $, then every cohesive power of$\mathcal {L}$has order-type$\omega + (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation