Switch to: References

Add citations

You must login to add citations.
  1. Generic at.Vincenzo Dimonte - 2018 - Mathematical Logic Quarterly 64 (1-2):118-132.
    In this paper we introduce a generic large cardinal akin to, together with the consequences of being such a generic large cardinal. In this case is Jónsson, and in a choiceless inner model many properties hold that are in contrast with pcf theory in.
    Download  
     
    Export citation  
     
    Bookmark  
  • LD-Algebras Beyond I0.Vincenzo Dimonte - 2019 - Notre Dame Journal of Formal Logic 60 (3):395-405.
    The algebra of embeddings at the I3 level has been deeply analyzed, but nothing is known algebra-wise for embeddings above I3. In this article, we introduce an operation for embeddings at the level of I0 and above, and prove that they generate an LD-algebra that can be quite different from the one implied by I3.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The iterability hierarchy above I3. [REVIEW]Alessandro Andretta & Vincenzo Dimonte - 2019 - Archive for Mathematical Logic 58 (1-2):77-97.
    In this paper we introduce a new hierarchy of large cardinals between I3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{\mathsf {I3}}}}$$\end{document} and I2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{\mathsf {I2}}}}$$\end{document}, the iterability hierarchy, and we prove that every step of it strongly implies the ones below.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The iterability hierarchy above $${{\mathrm{\mathsf {I3}}}}$$ I 3.Alessandro Andretta & Vincenzo Dimonte - 2019 - Archive for Mathematical Logic 58 (1-2):77-97.
    In this paper we introduce a new hierarchy of large cardinals between \ and \, the iterability hierarchy, and we prove that every step of it strongly implies the ones below.
    Download  
     
    Export citation  
     
    Bookmark