Switch to: References

Add citations

You must login to add citations.
  1. Super/rosy L k -theories and classes of finite structures.Cameron Donnay Hill - 2013 - Annals of Pure and Applied Logic 164 (10):907-927.
    We recover the essentials of þ-forking, rosiness and super-rosiness for certain amalgamation classes K, and thence of finite-variable theories of finite structures. This provides a foundation for a model-theoretic analysis of a natural extension of the “LkLk-Canonization Problem” – the possibility of efficiently recovering finite models of T given a finite presentation of an LkLk-theory T. Some of this work is accomplished through different sorts of “transfer” theorem to the first-order theory TlimTlim of the direct limit. Our results include, to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some aspects of model theory and finite structures.Eric Rosen - 2002 - Bulletin of Symbolic Logic 8 (3):380-403.
    Model theory is concerned mainly, although not exclusively, with infinite structures. In recent years, finite structures have risen to greater prominence, both within the context of mainstream model theory, e.g., in work of Lachlan, Cherlin, Hrushovski, and others, and with the advent of finite model theory, which incorporates elements of classical model theory, combinatorics, and complexity theory. The purpose of this survey is to provide an overview of what might be called the model theory of finite structures. Some topics in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Uncountable categoricity of local abstract elementary classes with amalgamation.John T. Baldwin & Olivier Lessmann - 2006 - Annals of Pure and Applied Logic 143 (1-3):29-42.
    We give a complete and elementary proof of the following upward categoricity theorem: let be a local abstract elementary class with amalgamation and joint embedding, arbitrarily large models, and countable Löwenheim–Skolem number. If is categorical in 1 then is categorical in every uncountable cardinal. In particular, this provides a new proof of the upward part of Morley’s theorem in first order logic without any use of prime models or heavy stability theoretic machinery.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Upward categoricity of very tame abstract elementary classes with amalgamation.John T. Baldwin & Olivier Lessmann - 2006 - Annals of Pure and Applied Logic 143 (1-3):29-42.
    Download  
     
    Export citation  
     
    Bookmark