Switch to: References

Add citations

You must login to add citations.
  1. Toward Sociotechnical AI: Mapping Vulnerabilities for Machine Learning in Context.Roel Dobbe & Anouk Wolters - 2024 - Minds and Machines 34 (2):1-51.
    This paper provides an empirical and conceptual account on seeing machine learning models as part of a sociotechnical system to identify relevant vulnerabilities emerging in the context of use. As ML is increasingly adopted in socially sensitive and safety-critical domains, many ML applications end up not delivering on their promises, and contributing to new forms of algorithmic harm. There is still a lack of empirical insights as well as conceptual tools and frameworks to properly understand and design for the impact (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The paradoxical transparency of opaque machine learning.Felix Tun Han Lo - forthcoming - AI and Society:1-13.
    This paper examines the paradoxical transparency involved in training machine-learning models. Existing literature typically critiques the opacity of machine-learning models such as neural networks or collaborative filtering, a type of critique that parallels the black-box critique in technology studies. Accordingly, people in power may leverage the models’ opacity to justify a biased result without subjecting the technical operations to public scrutiny, in what Dan McQuillan metaphorically depicts as an “algorithmic state of exception”. This paper attempts to differentiate the black-box abstraction (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation