Switch to: References

Add citations

You must login to add citations.
  1. Rado’s Conjecture and its Baire version.Jing Zhang - 2019 - Journal of Mathematical Logic 20 (1):1950015.
    Rado’s Conjecture is a compactness/reflection principle that says any nonspecial tree of height ω1 has a nonspecial subtree of size ℵ1. Though incompatible with Martin’s Axiom, Rado’s Conjecture turns out to have many interesting consequences that are also implied by certain forcing axioms. In this paper, we obtain consistency results concerning Rado’s Conjecture and its Baire version. In particular, we show that a fragment of PFA, which is the forcing axiom for Baire Indestructibly Proper forcings, is compatible with the Baire (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Combinatorial dichotomies in set theory.Stevo Todorcevic - 2011 - Bulletin of Symbolic Logic 17 (1):1-72.
    We give an overview of a research line concentrated on finding to which extent compactness fails at the level of first uncountable cardinal and to which extent it could be recovered on some other perhaps not so large cardinal. While this is of great interest to set theorists, one of the main motivations behind this line of research is in its applicability to other areas of mathematics. We give some details about this and we expose some possible directions for further (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Strong downward Löwenheim–Skolem theorems for stationary logics, I.Sakaé Fuchino, André Ottenbreit Maschio Rodrigues & Hiroshi Sakai - 2020 - Archive for Mathematical Logic 60 (1-2):17-47.
    This note concerns the model theoretic properties of logics extending the first-order logic with monadic second-order variables equipped with the stationarity quantifier. The eight variations of the strong downward Löwenheim–Skolem Theorem down to <ℵ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<\aleph _2$$\end{document} for this logic with the interpretation of second-order variables as countable subsets of the structures are classified into four principles. The strongest of these four is shown to be equivalent to the conjunction of CH and the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A variant of Shelah's characterization of Strong Chang's Conjecture.Sean Cox & Hiroshi Sakai - 2019 - Mathematical Logic Quarterly 65 (2):251-257.
    Download  
     
    Export citation  
     
    Bookmark