Switch to: References

Add citations

You must login to add citations.
  1. Does Bohm’s Quantum Force Have a Classical Origin?David C. Lush - 2016 - Foundations of Physics 46 (8):1006-1021.
    In the de Broglie–Bohm formulation of quantum mechanics, the electron is stationary in the ground state of hydrogenic atoms, because the quantum force exactly cancels the Coulomb attraction of the electron to the nucleus. In this paper it is shown that classical electrodynamics similarly predicts the Coulomb force can be effectively canceled by part of the magnetic force that occurs between two similar particles each consisting of a point charge moving with circulatory motion at the speed of light. Supposition of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The role of quantum recurrence in superconductivity, carbon nanotubes and related gauge symmetry breaking.Donatello Dolce & Andrea Perali - 2014 - Foundations of Physics 44 (9):905-922.
    Pure quantum phenomena are characterized by intrinsic recurrences in space and time. We use this intrinsic periodicity as a quantization condition to derive a heuristic description of the essential quantum phenomenology of superconductivity. The resulting description is based on fundamental quantum dynamics and geometrical considerations, rather than on microscopical characteristics of the superconducting materials. This allows us to investigate the related gauge symmetry breaking in terms of the competition between quantum recurrence and thermal noise. We also test the validity of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation