Switch to: References

Add citations

You must login to add citations.
  1. More on regular and decomposable ultrafilters in ZFC.Paolo Lipparini - 2010 - Mathematical Logic Quarterly 56 (4):340-374.
    We prove, in ZFC alone, some new results on regularity and decomposability of ultrafilters; among them: If m ≥ 1 and the ultrafilter D is , equation imagem)-regular, then D is κ -decomposable for some κ with λ ≤ κ ≤ 2λ ). If λ is a strong limit cardinal and D is , equation imagem)-regular, then either D is -regular or there are arbitrarily large κ < λ for which D is κ -decomposable ). Suppose that λ is singular, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Decomposable Ultrafilters and Possible Cofinalities.Paolo Lipparini - 2008 - Notre Dame Journal of Formal Logic 49 (3):307-312.
    We use Shelah's theory of possible cofinalities in order to solve some problems about ultrafilters. Theorem: Suppose that $\lambda$ is a singular cardinal, $\lambda ' \lessthan \lambda$, and the ultrafilter $D$ is $\kappa$ -decomposable for all regular cardinals $\kappa$ with $\lambda '\lessthan \kappa \lessthan \lambda$. Then $D$ is either $\lambda$-decomposable or $\lambda ^+$-decomposable. Corollary: If $\lambda$ is a singular cardinal, then an ultrafilter is ($\lambda$,$\lambda$)-regular if and only if it is either $\operator{cf} \lambda$-decomposable or $\lambda^+$-decomposable. We also give applications to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Realism, nonstandard set theory, and large cardinals.Karel Hrbacek - 2001 - Annals of Pure and Applied Logic 109 (1-2):15-48.
    Mathematicians justify axioms of set theory “intrinsically”, by reference to the universe of sets of their intuition, and “extrinsically”, for example, by considerations of simplicity or usefullness for mathematical practice. Here we apply the same kind of justifications to Nonstandard Analysis and argue for acceptance of BNST+ . BNST+ has nontrivial consequences for standard set theory; for example, it implies existence of inner models with measurable cardinals. We also consider how to practice Nonstandard Analysis in BNST+, and compare it with (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Depth of Boolean Algebras.Shimon Garti & Saharon Shelah - 2011 - Notre Dame Journal of Formal Logic 52 (3):307-314.
    Suppose $D$ is an ultrafilter on $\kappa$ and $\lambda^\kappa = \lambda$. We prove that if ${\bf B}_i$ is a Boolean algebra for every $i.
    Download  
     
    Export citation  
     
    Bookmark   1 citation