Switch to: References

Add citations

You must login to add citations.
  1. Turing reducibility in the fine hierarchy.Alexander G. Melnikov, Victor L. Selivanov & Mars M. Yamaleev - 2020 - Annals of Pure and Applied Logic 171 (7):102766.
    Download  
     
    Export citation  
     
    Bookmark  
  • Effective Domination and the Bounded Jump.Keng Meng Ng & Hongyuan Yu - 2020 - Notre Dame Journal of Formal Logic 61 (2):203-225.
    We study the relationship between effective domination properties and the bounded jump. We answer two open questions about the bounded jump: We prove that the analogue of Sacks jump inversion fails for the bounded jump and the wtt-reducibility. We prove that no c.e. bounded high set can be low by showing that they all have to be Turing complete. We characterize the class of c.e. bounded high sets as being those sets computing the Halting problem via a reduction with use (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Notes on Sacks’ Splitting Theorem.Klaus Ambos-Spies, Rod G. Downey, Martin Monath & N. G. Keng Meng - forthcoming - Journal of Symbolic Logic.
    We explore the complexity of Sacks’ Splitting Theorem in terms of the mind change functions associated with the members of the splits. We prove that, for any c.e. set A, there are low computably enumerable sets $A_0\sqcup A_1=A$ splitting A with $A_0$ and $A_1$ both totally $\omega ^2$ -c.a. in terms of the Downey–Greenberg hierarchy, and this result cannot be improved to totally $\omega $ -c.a. as shown in [9]. We also show that if cone avoidance is added then there (...)
    Download  
     
    Export citation  
     
    Bookmark