Switch to: References

Add citations

You must login to add citations.
  1. Splitting theorems in recursion theory.Rod Downey & Michael Stob - 1993 - Annals of Pure and Applied Logic 65 (1):1-106.
    A splitting of an r.e. set A is a pair A1, A2 of disjoint r.e. sets such that A1 A2 = A. Theorems about splittings have played an important role in recursion theory. One of the main reasons for this is that a splitting of A is a decomposition of A in both the lattice, , of recursively enumerable sets and in the uppersemilattice, R, of recursively enumerable degrees . Thus splitting theor ems have been used to obtain results about (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The translation theorem.Peter Cholak - 1994 - Archive for Mathematical Logic 33 (2):87-108.
    We state and prove the Translation Theorem. Then we apply the Translation Theorem to Soare's Extension Theorem, weakening slightly the hypothesis to yield a theorem we call the Modified Extension Theorem. We use this theorem to reprove several of the known results about orbits in the lattice of recursively enumerable sets. It is hoped that these proofs are easier to understand than the old proofs.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Isomorphisms of splits of computably enumerable sets.Peter A. Cholak & Leo A. Harrington - 2003 - Journal of Symbolic Logic 68 (3):1044-1064.
    We show that if A and $\widehat{A}$ are automorphic via Φ then the structures $S_{R}(A)$ and $S_{R}(\widehat{A})$ are $\Delta_{3}^{0}-isomorphic$ via an isomorphism Ψ induced by Φ. Then we use this result to classify completely the orbits of hhsimple sets.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Definable incompleteness and Friedberg splittings.Russell Miller - 2002 - Journal of Symbolic Logic 67 (2):679-696.
    We define a property R(A 0 , A 1 ) in the partial order E of computably enumerable sets under inclusion, and prove that R implies that A 0 is noncomputable and incomplete. Moreover, the property is nonvacuous, and the A 0 and A 1 which we build satisfying R form a Friedberg splitting of their union A, with A 1 prompt and A promptly simple. We conclude that A 0 and A 1 lie in distinct orbits under automorphisms of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • 2001 Annual Meeting of the Association for Symbolic Logic.Andre Scedrov - 2001 - Bulletin of Symbolic Logic 7 (3):420-435.
    Download  
     
    Export citation  
     
    Bookmark  
  • Orbits of computably enumerable sets: low sets can avoid an upper cone.Russell Miller - 2002 - Annals of Pure and Applied Logic 118 (1-2):61-85.
    We investigate the orbit of a low computably enumerable set under automorphisms of the partial order of c.e. sets under inclusion. Given an arbitrary low c.e. set A and an arbitrary noncomputable c.e. set C, we use the New Extension Theorem of Soare to construct an automorphism of mapping A to a set B such that CTB. Thus, the orbit in of the low set A cannot be contained in the upper cone above C. This complements a result of Harrington, (...)
    Download  
     
    Export citation  
     
    Bookmark