Switch to: References

Add citations

You must login to add citations.
  1. The Block Relation in Computable Linear Orders.Michael Moses - 2011 - Notre Dame Journal of Formal Logic 52 (3):289-305.
    The block relation B(x,y) in a linear order is satisfied by elements that are finitely far apart; a block is an equivalence class under this relation. We show that every computable linear order with dense condensation-type (i.e., a dense collection of blocks) but no infinite, strongly η-like interval (i.e., with all blocks of size less than some fixed, finite k ) has a computable copy with the nonblock relation ¬ B(x,y) computably enumerable. This implies that every computable linear order has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the complexity of the successivity relation in computable linear orderings.Rod Downey, Steffen Lempp & Guohua Wu - 2010 - Journal of Mathematical Logic 10 (1):83-99.
    In this paper, we solve a long-standing open question, about the spectrum of the successivity relation on a computable linear ordering. We show that if a computable linear ordering [Formula: see text] has infinitely many successivities, then the spectrum of the successivity relation is closed upwards in the computably enumerable Turing degrees. To do this, we use a new method of constructing [Formula: see text]-isomorphisms, which has already found other applications such as Downey, Kastermans and Lempp [9] and is of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations