Switch to: References

Add citations

You must login to add citations.
  1. Rationality of p-adic poincaré series: uniformity in p.Angus Macintyre - 1990 - Annals of Pure and Applied Logic 49 (1):31-74.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Boolean products of real closed valuation rings and fields.Jorge I. Guier - 2001 - Annals of Pure and Applied Logic 112 (2-3):119-150.
    We present some results concerning elimination of quantifiers and elementary equivalence for Boolean products of real closed valuation rings and fields. We also study rings of continuous functions and rings of definable functions over real closed valuation rings under this point of view.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On non-compact p-adic definable groups.Will Johnson & Ningyuan Yao - 2022 - Journal of Symbolic Logic 87 (1):188-213.
    In [16], Peterzil and Steinhorn proved that if a group G definable in an o-minimal structure is not definably compact, then G contains a definable torsion-free subgroup of dimension 1. We prove here a p-adic analogue of the Peterzil–Steinhorn theorem, in the special case of abelian groups. Let G be an abelian group definable in a p-adically closed field M. If G is not definably compact then there is a definable subgroup H of dimension 1 which is not definably compact. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Definably topological dynamics of p-adic algebraic groups.Jiaqi Bao & Ningyuan Yao - 2022 - Annals of Pure and Applied Logic 173 (4):103077.
    Download  
     
    Export citation  
     
    Bookmark  
  • Pseudo real closed fields, pseudo p-adically closed fields and NTP2.Samaria Montenegro - 2017 - Annals of Pure and Applied Logic 168 (1):191-232.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the elimination of imaginaries from certain valued fields.Philip Scowcroft & Angus Macintyre - 1993 - Annals of Pure and Applied Logic 61 (3):241-276.
    A nontrivial ring with unit eliminates imaginaries just in case its complete theory has the following property: every definable m-ary equivalence relation E may be defined by a formula f = f, where f is an m-ary definable function. We show that for certain natural expansions of the field of p-adic numbers, elimination of imaginaries fails or is independent of ZPC. Similar results hold for certain fields of formal power series.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computable valued fields.Matthew Harrison-Trainor - 2018 - Archive for Mathematical Logic 57 (5-6):473-495.
    We investigate the computability-theoretic properties of valued fields, and in particular algebraically closed valued fields and p-adically closed valued fields. We give an effectiveness condition, related to Hensel’s lemma, on a valued field which is necessary and sufficient to extend the valuation to any algebraic extension. We show that there is a computable formally p-adic field which does not embed into any computable p-adic closure, but we give an effectiveness condition on the divisibility relation in the value group which is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Definable choice for a class of weakly o-minimal theories.Michael C. Laskowski & Christopher S. Shaw - 2016 - Archive for Mathematical Logic 55 (5-6):735-748.
    Given an o-minimal structure M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}$$\end{document} with a group operation, we show that for a properly convex subset U, the theory of the expanded structure M′=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}'=$$\end{document} has definable Skolem functions precisely when M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}'$$\end{document} is valuational. As a corollary, we get an elementary proof that the theory of any such M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Lipschitz extensions of definable p‐adic functions.Tristan Kuijpers - 2015 - Mathematical Logic Quarterly 61 (3):151-158.
    In this paper, we prove a definable version of Kirszbraun's theorem in a non‐Archimedean setting for definable families of functions in one variable. More precisely, we prove that every definable function, where and, that is λ‐Lipschitz in the first variable, extends to a definable function that is λ‐Lipschitz in the first variable.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Strongly determined types.Alexandre A. Ivanov & Dugald Macpherson - 1999 - Annals of Pure and Applied Logic 99 (1-3):197-230.
    The notion of a strongly determined type over A extending p is introduced, where p .S. A strongly determined extension of p over A assigns, for any model M )- A, a type q S extending p such that, if realises q, then any elementary partial map M → M which fixes acleq pointwise is elementary over . This gives a crude notion of independence which arises very frequently. Examples are provided of many different kinds of theories with strongly determined (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On Groups with Definable F-Generics Definable in P-Adically Closed Fields.Anand Pillay & Y. A. O. Ningyuan - 2023 - Journal of Symbolic Logic 88 (4):1334-1353.
    The aim of this paper is to develop the theory of groups definable in the p-adic field ${{\mathbb {Q}}_p}$, with “definable f-generics” in the sense of an ambient saturated elementary extension of ${{\mathbb {Q}}_p}$. We call such groups definable f-generic groups.So, by a “definable f-generic” or $dfg$ group we mean a definable group in a saturated model with a global f-generic type which is definable over a small model. In the present context the group is definable over ${{\mathbb {Q}}_p}$, and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A transfer theorem in constructive real algebra.Philip Scowcroft - 1988 - Annals of Pure and Applied Logic 40 (1):29-87.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Definability of types and VC density in differential topological fields.Françoise Point - 2018 - Archive for Mathematical Logic 57 (7-8):809-828.
    Given a model-complete theory of topological fields, we considered its generic differential expansions and under a certain hypothesis of largeness, we axiomatised the class of existentially closed ones. Here we show that a density result for definable types over definably closed subsets in such differential topological fields. Then we show two transfer results, one on the VC-density and the other one, on the combinatorial property NTP2.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Groups of dimension two and three over o-minimal structures.A. Nesin, A. Pillay & V. Razenj - 1991 - Annals of Pure and Applied Logic 53 (3):279-296.
    Let G be a group definable in an o-minimal structure M. In this paper we show: Theorem. If G is a two-dimensional definably connected nonabelian group, then G is centerless and G is isomorphic to R+R*>0, for some real closed field R. Theorem. If G is a three-dimensional nonsolvable, centerless, definably connected group, then either G SO3 or G PSL2, for some real closed field R.
    Download  
     
    Export citation  
     
    Bookmark   5 citations