Switch to: References

Add citations

You must login to add citations.
  1. Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conceptual Modelling, Combinatorial Heuristics and Ars Inveniendi: An Epistemological History (Ch 1 & 2).Tom Ritchey - manuscript
    (1) An introduction to the principles of conceptual modelling, combinatorial heuristics and epistemological history; (2) the examination of a number of perennial epistemological-methodological schemata: conceptual spaces and blending theory; ars inveniendi and ars demonstrandi; the two modes of analysis and synthesis and their relationship to ars inveniendi; taxonomies and typologies as two fundamental epistemic structures; extended cognition, cognitio symbolica and model-based reasoning; (3) Plato’s notions of conceptual spaces, conceptual blending and hypothetical-analogical models (paradeigmata); (4) Ramon Llull’s concept analysis and combinatoric (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Simplified Kripke Semantics for K45-Like Gödel Modal Logics and Its Axiomatic Extensions.Ricardo Oscar Rodriguez, Olim Frits Tuyt, Francesc Esteva & Lluís Godo - 2022 - Studia Logica 110 (4):1081-1114.
    In this paper we provide a simplified, possibilistic semantics for the logics K45, i.e. a many-valued counterpart of the classical modal logic K45 over the [0, 1]-valued Gödel fuzzy logic \. More precisely, we characterize K45 as the set of valid formulae of the class of possibilistic Gödel frames \, where W is a non-empty set of worlds and \ is a possibility distribution on W. We provide decidability results as well. Moreover, we show that all the results also apply (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the relation between possibilistic logic and modal logics of belief and knowledge.Mohua Banerjee, Didier Dubois, Lluis Godo & Henri Prade - 2017 - Journal of Applied Non-Classical Logics 27 (3-4):206-224.
    Possibilistic logic and modal logic are knowledge representation frameworks sharing some common features, such as the duality between possibility and necessity, and the decomposability of necessity for conjunctions, as well as some obvious differences since possibility theory is graded. At the semantic level, possibilistic logic relies on possibility distributions and modal logic on accessibility relations. In the last 30 years, there have been a series of attempts for bridging the two frameworks in one way or another. In this paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An elementary belief function logic.Didier Dubois, Lluis Godo & Henri Prade - 2023 - Journal of Applied Non-Classical Logics 33 (3-4):582-605.
    1. There are two distinct lines of research that aim at modelling belief and knowledge: modal logic and uncertainty theories. Modal logic extends classical logic by introducing knowledge or belief...
    Download  
     
    Export citation  
     
    Bookmark