Switch to: References

Add citations

You must login to add citations.
  1. A substructural analysis of embedded conditionals.Pilar Terrés Villalonga - 2020 - Synthese 199 (Suppl 3):571-595.
    The aim of this paper is to give a general solution to the paradoxes of the material conditional, including the paradoxes generated by embedded conditionals. The solution consists in a pragmatic reinterpretation of the formal languages of classical logic LK and relevant logic LR as presented in Paoli. In particular I argue that the material conditional in the classical logic LK captures the truth conditions of “if...then”, but ignores certain pragmatic enrichments that are associated to it, while relevant logic LR (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Game-theoretic semantics for non-distributive logics.Chrysafis Hartonas - 2019 - Logic Journal of the IGPL 27 (5):718-742.
    We introduce game-theoretic semantics for systems without the conveniences of either a De Morgan negation, or of distribution of conjunction over disjunction and conversely. Much of game playing rests on challenges issued by one player to the other to satisfy, or refute, a sentence, while forcing him/her to move to some other place in the game’s chessboard-like configuration. Correctness of the game-theoretic semantics is proven for both a training game, corresponding to Positive Lattice Logic and for more advanced games for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The simple argument for subclassical logic.Jc Beall - 2018 - Philosophical Issues 28 (1):30-54.
    This paper presents a simple but, by my lights, effective argument for a subclassical account of logic—an account according to which logical consequence is (properly) weaker than the standard, so‐called classical account. Alas, the vast bulk of the paper is setup. Because of the many conflicting uses of ‘logic’ the paper begins, following a disclaimer on logic and inference, by fixing the sense of ‘logic’ in question, and then proceeds to rehearse both the target subclassical account of logic and its (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • On recent applications of paraconsistent logic: an exploratory literature review.A. Zamansky - 2019 - Journal of Applied Non-Classical Logics 29 (4):382-391.
    This paper aims to empirically explore the state of practical applications of paraconsistent logics. To this end, we performed an exploratory literature review, analysing papers published between the years 2015 and 2018. Paraconsistent formalisms based on annotated logics are practically the sole type of approach we found to be applied in engineering applications. The engineering problems solved by paraconsistent approaches were mainly in the fields of signal and image processing and decision support. The results of our exploratory review indicate that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Substructural Fuzzy-Relevance Logic.Eunsuk Yang - 2015 - Notre Dame Journal of Formal Logic 56 (3):471-491.
    This paper proposes a new topic in substructural logic for use in research joining the fields of relevance and fuzzy logics. For this, we consider old and new relevance principles. We first introduce fuzzy systems satisfying an old relevance principle, that is, Dunn’s weak relevance principle. We present ways to obtain relevant companions of the weakening-free uninorm systems introduced by Metcalfe and Montagna and fuzzy companions of the system R of relevant implication and its neighbors. The algebraic structures corresponding to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cut and gamma I: Propositional and constant domain R.Yale Weiss - 2020 - Review of Symbolic Logic 13 (4):887-909.
    The main object of this article is to give two novel proofs of the admissibility of Ackermann’s rule (γ) for the propositional relevant logic R. The results are established as corollaries of cut elimination for systems of tableaux for R. Cut elimination, in turn, is established both nonconstructively (as a corollary of completeness) and constructively (using Gentzen-like methods). The extensibility of the techniques is demonstrated by showing that (γ) is admissible for RQ* (R with constant domain quantifiers). The status of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Fmla-Fmla Axiomatizations of the Exactly True and Non-falsity Logics and Some of Their Cousins.Yaroslav Shramko, Dmitry Zaitsev & Alexander Belikov - 2019 - Journal of Philosophical Logic 48 (5):787-808.
    In this paper we present a solution of the axiomatization problem for the Fmla-Fmla versions of the Pietz and Rivieccio exactly true logic and the non-falsity logic dual to it. To prove the completeness of the corresponding binary consequence systems we introduce a specific proof-theoretic formalism, which allows us to deal simultaneously with two consequence relations within one logical system. These relations are hierarchically organized, so that one of them is treated as the basic for the resulting logic, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A Cut-Elimination Proof in Positive Relevant Logic with Necessity.Mirjana Ilić - 2020 - Studia Logica 109 (3):607-638.
    This paper presents a sequent calculus for the positive relevant logic with necessity and a proof that it admits the elimination of cut.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modal translation of substructural logics.Chrysafis Hartonas - 2020 - Journal of Applied Non-Classical Logics 30 (1):16-49.
    In an article dating back in 1992, Kosta Došen initiated a project of modal translations in substructural logics, aiming at generalising the well-known Gödel–McKinsey–Tarski translation of intuitionistic logic into S4. Došen's translation worked well for (variants of) BCI and stronger systems (BCW, BCK), but not for systems below BCI. Dropping structural rules results in logic systems without distribution. In this article, we show, via translation, that every substructural (indeed, every non-distributive) logic is a fragment of a corresponding sorted, residuated (multi) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Simple Axiomatizations for Pretabular Classical Relevance Logics.Asadollah Fallahi - 2020 - Studia Logica 108 (2):359-393.
    KR is Anderson and Belnap’s relevance logic R with the addition of the axiom of EFQ: \ \rightarrow q\). Since KR is relevantistic as to implication but classical as to negation, it has been dubbed, among many others, a ‘classical relevance logic.’ For KR, there have been known so far just two pretabular normal extensions. For these pretabular logics, no simple axiomatizations have yet been presented. In this paper, we offer some and show that they do the job. We also (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relevance for the Classical Logician.Ethan Brauer - 2020 - Review of Symbolic Logic 13 (2):436-457.
    Although much technical and philosophical attention has been given to relevance logics, the notion of relevance itself is generally left at an intuitive level. It is difficult to find in the literature an explicit account of relevance in formal reasoning. In this article I offer a formal explication of the notion of relevance in deductive logic and argue that this notion has an interesting place in the study of classical logic. The main idea is that a premise is relevant to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations