Switch to: References

Add citations

You must login to add citations.
  1. Phenomenology, Perspectivalism and (Quantum) Physics.Steven French - 2024 - Foundations of Physics 54 (3):1-18.
    It has been claimed that Massimi’s recent perspectival approach to science sits in tension with a realist stance. I shall argue that this tension can be defused in the quantum context by recasting Massimi’s perspectivalism within a phenomenological framework. I shall begin by indicating how the different but complementary forms of the former are manifested in the distinction between certain so-called ‘-epistemic’ and ‘-ontic’ understandings of quantum mechanics, namely QBism and Relational Quantum Mechanics, respectively. A brief consideration of Dieks’ perspectivism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • “The language of Dirac’s theory of radiation”: the inception and initial reception of a tool for the quantum field theorist.Markus Ehberger - 2022 - Archive for History of Exact Sciences 76 (6):531-571.
    In 1927, Paul Dirac first explicitly introduced the idea that electrodynamical processes can be evaluated by decomposing them into virtual (modern terminology), energy non-conserving subprocesses. This mode of reasoning structured a lot of the perturbative evaluations of quantum electrodynamics during the 1930s. Although the physical picture connected to Feynman diagrams is no longer based on energy non-conserving transitions but on off-shell particles, emission and absorption subprocesses still remain their fundamental constituents. This article will access the introduction and the initial reception (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert-style axiomatic completion: On von Neumann and hidden variables in quantum mechanics.Chris Mitsch - 2022 - Studies in History and Philosophy of Science Part A 95 (C):84-95.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Operator calculus: the lost formulation of quantum mechanics.Gonzalo Gimeno, Mercedes Xipell & Marià Baig - 2021 - Archive for History of Exact Sciences 75 (3):283-322.
    Traditionally, “the operator calculus of Born and Wiener” has been considered one of the four formulations of quantum mechanics that existed in 1926. The present paper reviews the operator calculus as applied by Max Born and Norbert Wiener during the last months of 1925 and the early months of 1926 and its connections with the rise of the new quantum theory. Despite the relevance of this operator calculus, Born–Wiener’s joint contribution to the topic is generally bypassed in historical accounts of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum mechanics, radiation, and the equivalence proof.Alexander Blum & Martin Jähnert - 2024 - Archive for History of Exact Sciences 78 (5):567-616.
    This paper re-evaluates the formative year of quantum mechanics—from Heisenberg’s first paper on matrix mechanics to Schrödinger’s equivalence proof—by focusing on the role of radiation in the emerging theory. We argue that the radiation problem played a key role in early quantum mechanics, a role that has not been taken into account in the standard histories. Radiation was perceived by the main protagonists of matrix and wave mechanics as a central lacuna in these emerging theories and continued to contribute to (...)
    Download  
     
    Export citation  
     
    Bookmark