Switch to: References

Add citations

You must login to add citations.
  1. “That’s just Future Medicine” - a qualitative study on users’ experiences of symptom checker apps.Regina Müller, Malte Klemmt, Roland Koch, Hans-Jörg Ehni, Tanja Henking, Elisabeth Langmann, Urban Wiesing & Robert Ranisch - 2024 - BMC Medical Ethics 25 (1):1-19.
    Background Symptom checker apps (SCAs) are mobile or online applications for lay people that usually have two main functions: symptom analysis and recommendations. SCAs ask users questions about their symptoms via a chatbot, give a list with possible causes, and provide a recommendation, such as seeing a physician. However, it is unclear whether the actual performance of a SCA corresponds to the users’ experiences. This qualitative study investigates the subjective perspectives of SCA users to close the empirical gap identified in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • “Many roads lead to Rome and the Artificial Intelligence only shows me one road”: an interview study on physician attitudes regarding the implementation of computerised clinical decision support systems.Sigrid Sterckx, Tamara Leune, Johan Decruyenaere, Wim Van Biesen & Daan Van Cauwenberge - 2022 - BMC Medical Ethics 23 (1):1-14.
    Research regarding the drivers of acceptance of clinical decision support systems by physicians is still rather limited. The literature that does exist, however, tends to focus on problems regarding the user-friendliness of CDSS. We have performed a thematic analysis of 24 interviews with physicians concerning specific clinical case vignettes, in order to explore their underlying opinions and attitudes regarding the introduction of CDSS in clinical practice, to allow a more in-depth analysis of factors underlying acceptance of CDSS. We identified three (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Machine learning, healthcare resource allocation, and patient consent.Jamie Webb - forthcoming - The New Bioethics:1-22.
    The impact of machine learning in healthcare on patient informed consent is now the subject of significant inquiry in bioethics. However, the topic has predominantly been considered in the context of black box diagnostic or treatment recommendation algorithms. The impact of machine learning involved in healthcare resource allocation on patient consent remains undertheorized. This paper will establish where patient consent is relevant in healthcare resource allocation, before exploring the impact on informed consent from the introduction of black box machine learning (...)
    Download  
     
    Export citation  
     
    Bookmark