Switch to: References

Add citations

You must login to add citations.
  1. Varieties of positive modal algebras and structural completeness.Tommaso Moraschini - 2019 - Review of Symbolic Logic 12 (3):557-588.
    Positive modal algebras are the$$\left\langle { \wedge, \vee,\diamondsuit,\square,0,1} \right\rangle $$-subreducts of modal algebras. We prove that the variety of positive S4-algebras is not locally finite. On the other hand, the free one-generated positive S4-algebra is shown to be finite. Moreover, we describe the bottom part of the lattice of varieties of positive S4-algebras. Building on this, we characterize structurally complete varieties of positive K4-algebras.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hereditarily structurally complete positive logics.Alex Citkin - 2020 - Review of Symbolic Logic 13 (3):483-502.
    Positive logics are $\{ \wedge, \vee, \to \}$-fragments of intermediate logics. It is clear that the positive fragment of $Int$ is not structurally complete. We give a description of all hereditarily structurally complete positive logics, while the question whether there is a structurally complete positive logic which is not hereditarily structurally complete, remains open.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Finitary Extensions of the Nilpotent Minimum Logic and (Almost) Structural Completeness.Joan Gispert - 2018 - Studia Logica 106 (4):789-808.
    In this paper we study finitary extensions of the nilpotent minimum logic or equivalently quasivarieties of NM-algebras. We first study structural completeness of NML, we prove that NML is hereditarily almost structurally complete and moreover NM\, the axiomatic extension of NML given by the axiom \^{2}\leftrightarrow ^{2})^{2}\), is hereditarily structurally complete. We use those results to obtain the full description of the lattice of all quasivarieties of NM-algebras which allow us to characterize and axiomatize all finitary extensions of NML.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Preservation of admissible rules when combining logics.João Rasga, Cristina Sernadas & Amílcar Sernadas - 2016 - Review of Symbolic Logic 9 (4):641-663.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Admissible Rules and the Leibniz Hierarchy.James G. Raftery - 2016 - Notre Dame Journal of Formal Logic 57 (4):569-606.
    This paper provides a semantic analysis of admissible rules and associated completeness conditions for arbitrary deductive systems, using the framework of abstract algebraic logic. Algebraizability is not assumed, so the meaning and significance of the principal notions vary with the level of the Leibniz hierarchy at which they are presented. As a case study of the resulting theory, the nonalgebraizable fragments of relevance logic are considered.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Structural completeness of the first‐order predicate calculus.W. A. Pogorzelski & T. Prucnal - 1975 - Mathematical Logic Quarterly 21 (1):315-320.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Structural Completeness in Substructural Logics.J. S. Olson, J. G. Raftery & C. J. Van Alten - 2008 - Logic Journal of the IGPL 16 (5):453-495.
    Hereditary structural completeness is established for a range of substructural logics, mainly without the weakening rule, including fragments of various relevant or many-valued logics. Also, structural completeness is disproved for a range of systems, settling some previously open questions.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Zagadnienie stopni maksymalnoścl. (Przegląd).Grzegorz Malinowski - 1985 - Acta Universitatis Lodziensis. Folia Philosophica. Ethica-Aesthetica-Practica 3:37-57.
    Artykuł jest celnym przeglądem metod dowodzenia twierdzeń o stopniach maksymalności i rezultatów uzyskanych w tej dziedzinie do 1979 r.
    Download  
     
    Export citation  
     
    Bookmark  
  • Unification in intermediate logics.Rosalie Iemhoff & Paul Rozière - 2015 - Journal of Symbolic Logic 80 (3):713-729.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Admissible Rules of ${{mathsf{BD}_{2}}}$ and ${mathsf{GSc}}$.Jeroen P. Goudsmit - 2018 - Notre Dame Journal of Formal Logic 59 (3):325-353.
    The Visser rules form a basis of admissibility for the intuitionistic propositional calculus. We show how one can characterize the existence of covers in certain models by means of formulae. Through this characterization, we provide a new proof of the admissibility of a weak form of the Visser rules. Finally, we use this observation, coupled with a description of a generalization of the disjunction property, to provide a basis of admissibility for the intermediate logics BD2 and GSc.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Structural Completeness in Many-Valued Logics with Rational Constants.Joan Gispert, Zuzana Haniková, Tommaso Moraschini & Michał Stronkowski - 2022 - Notre Dame Journal of Formal Logic 63 (3):261-299.
    The logics RŁ, RP, and RG have been obtained by expanding Łukasiewicz logic Ł, product logic P, and Gödel–Dummett logic G with rational constants. We study the lattices of extensions and structural completeness of these three expansions, obtaining results that stand in contrast to the known situation in Ł, P, and G. Namely, RŁ is hereditarily structurally complete. RP is algebraized by the variety of rational product algebras that we show to be Q-universal. We provide a base of admissible rules (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hereditarily Structurally Complete Superintuitionistic Deductive Systems.Alex Citkin - 2018 - Studia Logica 106 (4):827-856.
    Propositional logic is understood as a set of theorems defined by a deductive system: a set of axioms and a set of rules. Superintuitionistic logic is a logic extending intuitionistic propositional logic \. A rule is admissible for a logic if any substitution that makes each premise a theorem, makes the conclusion a theorem too. A deductive system \ is structurally complete if any rule admissible for the logic defined by \ is derivable in \. It is known that any (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Structural Completeness in Fuzzy Logics.Petr Cintula & George Metcalfe - 2009 - Notre Dame Journal of Formal Logic 50 (2):153-182.
    Structural completeness properties are investigated for a range of popular t-norm based fuzzy logics—including Łukasiewicz Logic, Gödel Logic, Product Logic, and Hájek's Basic Logic—and their fragments. General methods are defined and used to establish these properties or exhibit their failure, solving a number of open problems.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Hereditarily Structurally Complete Intermediate Logics: Citkin’s Theorem Via Duality.Nick Bezhanishvili & Tommaso Moraschini - 2023 - Studia Logica 111 (2):147-186.
    A deductive system is said to be structurally complete if its admissible rules are derivable. In addition, it is called hereditarily structurally complete if all its extensions are structurally complete. Citkin (1978) proved that an intermediate logic is hereditarily structurally complete if and only if the variety of Heyting algebras associated with it omits five finite algebras. Despite its importance in the theory of admissible rules, a direct proof of Citkin’s theorem is not widely accessible. In this paper we offer (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Structural and universal completeness in algebra and logic.Paolo Aglianò & Sara Ugolini - 2024 - Annals of Pure and Applied Logic 175 (3):103391.
    Download  
     
    Export citation  
     
    Bookmark   3 citations