Switch to: References

Add citations

You must login to add citations.
  1. Quine’s Substitutional Definition of Logical Truth and the Philosophical Significance of the Löwenheim-Hilbert-Bernays Theorem.Henri Wagner - 2018 - History and Philosophy of Logic 40 (2):182-199.
    The Löwenheim-Hilbert-Bernays theorem states that, for an arithmetical first-order language L, if S is a satisfiable schema, then substitution of open sentences of L for the predicate letters of S...
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • First‐order logical validity and the hilbert‐bernays theorem.Gary Ebbs & Warren Goldfarb - 2018 - Philosophical Issues 28 (1):159-175.
    What we call the Hilbert‐Bernays (HB) Theorem establishes that for any satisfiable first‐order quantificational schema S, there are expressions of elementary arithmetic that yield a true sentence of arithmetic when they are substituted for the predicate letters in S. Our goals here are, first, to explain and defend W. V. Quine's claim that the HB theorem licenses us to define the first‐order logical validity of a schema in terms of predicate substitution; second, to clarify the theorem by sketching an accessible (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Incompleteness Via Paradox and Completeness.Walter Dean - 2020 - Review of Symbolic Logic 13 (3):541-592.
    This paper explores the relationship borne by the traditional paradoxes of set theory and semantics to formal incompleteness phenomena. A central tool is the application of the Arithmetized Completeness Theorem to systems of second-order arithmetic and set theory in which various “paradoxical notions” for first-order languages can be formalized. I will first discuss the setting in which this result was originally presented by Hilbert & Bernays (1939) and also how it was later adapted by Kreisel (1950) and Wang (1955) in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations