Switch to: References

Citations of:

Separable Theories

Journal of Symbolic Logic 34 (1):127-127 (1969)

Add citations

You must login to add citations.
  1. (1 other version)Index sets for Π01 classes.Douglas Cenzer & Jeffrey Remmel - 1998 - Annals of Pure and Applied Logic 93 (1-3):3-61.
    A Π01 class is an effectively closed set of reals. We study properties of these classes determined by cardinality, measure and category as well as by the complexity of the members of a class P. Given an effective enumeration {Pe:e < ω} of the Π01 classes, the index set I for a certain property is the set of indices e such that Pe has the property. For example, the index set of binary Π01 classes of positive measure is Σ02 complete. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Antibasis theorems for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} classes and the jump hierarchy. [REVIEW]Ahmet Çevik - 2013 - Archive for Mathematical Logic 52 (1-2):137-142.
    We prove two antibasis theorems for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} classes. The first is a jump inversion theorem for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} classes with respect to the global structure of the Turing degrees. For any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P\subseteq 2^\omega}$$\end{document}, define S(P), the degree spectrum of P, to be the set of all Turing degrees a such that there exists \documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations