Switch to: References

Add citations

You must login to add citations.
  1. On Concrete Universals: A Modern Treatment using Category Theory.David Ellerman - 2014 - AL-Mukhatabat.
    Today it would be considered "bad Platonic metaphysics" to think that among all the concrete instances of a property there could be a universal instance so that all instances had the property by virtue of participating in that concrete universal. Yet there is a mathematical theory, category theory, dating from the mid-20th century that shows how to precisely model concrete universals within the "Platonic Heaven" of mathematics. This paper, written for the philosophical logician, develops this category-theoretic treatment of concrete universals (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Sheaves and normal submodels.Richard Mansfield - 1977 - Journal of Symbolic Logic 42 (2):241-250.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On elementary equivalence of real semigroups of preordered rings.F. Miraglia & Hugo Mariano - forthcoming - Logic Journal of the IGPL.
    Download  
     
    Export citation  
     
    Bookmark  
  • Intellectual Trespassing as a Way of Life: Essays in Philosophy, Economics, and Mathematics.David P. Ellerman - 1995 - Rowman & Littlefield Publishers.
    Dramatic changes or revolutions in a field of science are often made by outsiders or 'trespassers,' who are not limited by the established, 'expert' approaches. Each essay in this diverse collection shows the fruits of intellectual trespassing and poaching among fields such as economics, Kantian ethics, Platonic philosophy, category theory, double-entry accounting, arbitrage, algebraic logic, series-parallel duality, and financial arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On some sheaves of special groups.Vincent Astier - 2007 - Archive for Mathematical Logic 46 (5-6):481-488.
    Using sheaves of special groups, we show that a general local-global principle holds for every reduced special group whose associated space of orderings only has a finite number of accumulation points. We also compute the behaviour of the Boolean hull functor applied to sheaves of special groups.
    Download  
     
    Export citation  
     
    Bookmark  
  • Category theory and concrete universals.David P. Ellerman - 1988 - Erkenntnis 28 (3):409 - 429.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Ultrasheaves and Double Negation.Jonas Eliasson & Steve Awodey - 2004 - Notre Dame Journal of Formal Logic 45 (4):235-245.
    Moerdijk has introduced a topos of sheaves on a category of filters. Following his suggestion, we prove that its double negation subtopos is the topos of sheaves on the subcategory of ultrafilters - the ultrasheaves. We then use this result to establish a double negation translation of results between the topos of ultrasheaves and the topos on filters.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ultrapowers as sheaves on a category of ultrafilters.Jonas Eliasson - 2004 - Archive for Mathematical Logic 43 (7):825-843.
    In the paper we investigate the topos of sheaves on a category of ultrafilters. The category is described with the help of the Rudin-Keisler ordering of ultrafilters. It is shown that the topos is Boolean and two-valued and that the axiom of choice does not hold in it. We prove that the internal logic in the topos does not coincide with that in any of the ultrapowers. We also show that internal set theory, an axiomatic nonstandard set theory, can be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Saturated models of intuitionistic theories.Carsten Butz - 2004 - Annals of Pure and Applied Logic 129 (1-3):245-275.
    We use the language of categorical logic to construct generic saturated models of intuitionistic theories. Our main technique is the thorough study of the filter construction on categories with finite limits, which is the completion of subobject lattices under filtered meets. When restricted to coherent or Heyting categories, classifying categories of intuitionistic first-order theories, the resulting categories are filtered meet coherent categories, coherent categories with complete subobject lattices such that both finite disjunctions and existential quantification distribute over filtered meets. Such (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Sheaves of structures, Heyting‐valued structures, and a generalization of Łoś's theorem.Hisashi Aratake - 2021 - Mathematical Logic Quarterly 67 (4):445-468.
    Sheaves of structures are useful to give constructions in universal algebra and model theory. We can describe their logical behavior in terms of Heyting‐valued structures. In this paper, we first provide a systematic treatment of sheaves of structures and Heyting‐valued structures from the viewpoint of categorical logic. We then prove a form of Łoś's theorem for Heyting‐valued structures. We also give a characterization of Heyting‐valued structures for which Łoś's theorem holds with respect to any maximal filter.
    Download  
     
    Export citation  
     
    Bookmark   2 citations