Switch to: References

Add citations

You must login to add citations.
  1. On Classical and Quantum Logical Entropy.David Ellerman - manuscript
    The notion of a partition on a set is mathematically dual to the notion of a subset of a set, so there is a logic of partitions dual to Boole's logic of subsets (Boolean logic is usually mis-specified as "propositional" logic). The notion of an element of a subset has as its dual the notion of a distinction of a partition (a pair of elements in different blocks). Boole developed finite logical probability as the normalized counting measure on elements of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The Quantum Logic of Direct-Sum Decompositions: The Dual to the Quantum Logic of Subspaces.David Ellerman - 2017
    Since the pioneering work of Birkhoff and von Neumann, quantum logic has been interpreted as the logic of (closed) subspaces of a Hilbert space. There is a progression from the usual Boolean logic of subsets to the "quantum logic" of subspaces of a general vector space--which is then specialized to the closed subspaces of a Hilbert space. But there is a "dual" progression. The notion of a partition (or quotient set or equivalence relation) is dual (in a category-theoretic sense) to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An Introduction to Partition Logic.David Ellerman - 2014 - Logic Journal of the IGPL 22 (1):94-125.
    Classical logic is usually interpreted as the logic of propositions. But from Boole's original development up to modern categorical logic, there has always been the alternative interpretation of classical logic as the logic of subsets of any given (nonempty) universe set. Partitions on a universe set are dual to subsets of a universe set in the sense of the reverse-the-arrows category-theoretic duality--which is reflected in the duality between quotient objects and subobjects throughout algebra. Hence the idea arises of a dual (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Follow the Math!: The Mathematics of Quantum Mechanics as the Mathematics of Set Partitions Linearized to (Hilbert) Vector Spaces.David Ellerman - 2022 - Foundations of Physics 52 (5):1-40.
    The purpose of this paper is to show that the mathematics of quantum mechanics is the mathematics of set partitions linearized to vector spaces, particularly in Hilbert spaces. That is, the math of QM is the Hilbert space version of the math to describe objective indefiniteness that at the set level is the math of partitions. The key analytical concepts are definiteness versus indefiniteness, distinctions versus indistinctions, and distinguishability versus indistinguishability. The key machinery to go from indefinite to more definite (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Four ways from universal to particular: how Chomsky’s principles-and-parameters model is not selectionist.David P. Ellerman - 2016 - Journal of Applied Non-Classical Logics 26 (3):193-207.
    Following the development of the selectionist theory of the immune system, there was an attempt to characterise many biological mechanisms as being ‘selectionist’ as juxtaposed with ‘instructionist’. However, this broad definition would group Darwinian evolution, the immune system, embryonic development, and Chomsky’s principles-and-parameters language-acquisition mechanism together under the ‘selectionist’ umbrella, even though Chomsky’s mechanism and embryonic development are significantly different from the selectionist mechanisms of biological evolution and the immune system. Surprisingly, there is an abstract way using two dual mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The Quantum Logic of Direct-Sum Decompositions: The Dual to the Quantum Logic of Subspaces.David Ellerman - 2018 - Logic Journal of the IGPL 26 (1):1-13.
    ince the pioneering work of Birkhoff and von Neumann, quantum logic has been interpreted as the logic of subspaces of a Hilbert space. There is a progression from the usual Boolean logic of subsets to the "quantum logic" of subspaces of a general vector space--which is then specialized to the closed subspaces of a Hilbert space. But there is a "dual" progression. The set notion of a partition is dual to the notion of a subset. Hence the Boolean logic of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logical information theory: new logical foundations for information theory.David Ellerman - 2017 - Logic Journal of the IGPL 25 (5):806-835.
    There is a new theory of information based on logic. The definition of Shannon entropy as well as the notions on joint, conditional, and mutual entropy as defined by Shannon can all be derived by a uniform transformation from the corresponding formulas of logical information theory. Information is first defined in terms of sets of distinctions without using any probability measure. When a probability measure is introduced, the logical entropies are simply the values of the probability measure on the sets (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12):4863-4896.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. The previous attempts (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations