Switch to: References

Add citations

You must login to add citations.
  1. Destructibility and axiomatizability of Kaufmann models.Corey Bacal Switzer - 2022 - Archive for Mathematical Logic 61 (7):1091-1111.
    A Kaufmann model is an \(\omega _1\) -like, recursively saturated, rather classless model of \({{\mathsf {P}}}{{\mathsf {A}}}\) (or \({{\mathsf {Z}}}{{\mathsf {F}}} \) ). Such models were constructed by Kaufmann under the combinatorial principle \(\diamondsuit _{\omega _1}\) and Shelah showed they exist in \(\mathsf {ZFC}\) by an absoluteness argument. Kaufmann models are an important witness to the incompactness of \(\omega _1\) similar to Aronszajn trees. In this paper we look at some set theoretic issues related to this motivated by the seemingly (...)
    Download  
     
    Export citation  
     
    Bookmark