Switch to: References

Add citations

You must login to add citations.
  1. Local collection and end-extensions of models of compositional truth.Mateusz Łełyk & Bartosz Wcisło - 2021 - Annals of Pure and Applied Logic 172 (6):102941.
    We introduce a principle of local collection for compositional truth predicates and show that it is arithmetically conservative over the classically compositional theory of truth. This axiom states that upon restriction to formulae of any syntactic complexity, the resulting predicate satisfies full collection. In particular, arguments using collection for the truth predicate applied to sentences occurring in any given (code of a) proof do not suffice to show that the conclusion of that proof is true, in stark contrast to the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Reflecting on believability: on the epistemic approach to justifying implicit commitments.Maciej Głowacki & Mateusz Łełyk - 2024 - Philosophical Studies 181 (11):3135-3163.
    By definition, the implicit commitment of a formal theory $$\textrm{Th}$$ Th consists of sentences that are independent of the axioms of $$\textrm{Th}$$ Th, but their acceptance is implicit in the acceptance of $$\textrm{Th}$$ Th. In Cieśliński (2017, 2018), the phenomenon of implicit commitments was studied from the epistemological perspective through the lenses of the formal theory of believability. The current paper provides a comprehensive proof-theoretic analysis of this approach and compares it to other main theories of implicit commitments. We argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Varieties of truth definitions.Piotr Gruza & Mateusz Łełyk - 2024 - Archive for Mathematical Logic 63 (5):563-589.
    We study the structure of the partial order induced by the definability relation on definitions of truth for the language of arithmetic. Formally, a definition of truth is any sentence $$\alpha $$ which extends a weak arithmetical theory (which we take to be $${{\,\mathrm{I\Delta _{0}+\exp }\,}}$$ ) such that for some formula $$\Theta $$ and any arithmetical sentence $$\varphi $$, $$\Theta (\ulcorner \varphi \urcorner )\equiv \varphi $$ is provable in $$\alpha $$. We say that a sentence $$\beta $$ is definable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Satisfaction Classes with Approximate Disjunctive Correctness.Ali Enayat - forthcoming - Review of Symbolic Logic:1-18.
    The seminal Krajewski–Kotlarski–Lachlan theorem (1981) states that every countable recursively saturated model of $\mathsf {PA}$ (Peano arithmetic) carries a full satisfaction class. This result implies that the compositional theory of truth over $\mathsf {PA}$ commonly known as $\mathsf {CT}^{-}[\mathsf {PA}]$ is conservative over $\mathsf {PA}$. In contrast, Pakhomov and Enayat (2019) showed that the addition of the so-called axiom of disjunctive correctness (that asserts that a finite disjunction is true iff one of its disjuncts is true) to $\mathsf {CT}^{-}[\mathsf {PA}]$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Comparing Axiomatic Theories of Truth.Mateusz Łełyk - 2019 - Studia Semiotyczne 33 (2):255-286.
    The main aim of our paper was to present three formal tools for comparing various axiomatic theories of truth. In Section 2 we aimed at showing that there are indeed many different approaches to defining a set of axioms for the notion of truth. In Section 3 we introduced three different \measures of strength" of axiomatic theories of truth, i.e. three reflexive and transitive relations on the set of axiomatic theories of truth. We have explained the intuition behind each of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Axiomatizations of Peano Arithmetic: A Truth-Theoretic View.Ali Enayat & Mateusz Łełyk - 2023 - Journal of Symbolic Logic 88 (4):1526-1555.
    We employ the lens provided by formal truth theory to study axiomatizations of Peano Arithmetic ${\textsf {(PA)}}$. More specifically, let Elementary Arithmetic ${\textsf {(EA)}}$ be the fragment $\mathsf {I}\Delta _0 + \mathsf {Exp}$ of ${\textsf {PA}}$, and let ${\textsf {CT}}^-[{\textsf {EA}}]$ be the extension of ${\textsf {EA}}$ by the commonly studied axioms of compositional truth ${\textsf {CT}}^-$. We investigate both local and global properties of the family of first order theories of the form ${\textsf {CT}}^-[{\textsf {EA}}] +\alpha $, where $\alpha (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The two halves of disjunctive correctness.Cezary Cieśliński, Mateusz Łełyk & Bartosz Wcisło - 2023 - Journal of Mathematical Logic 23 (2).
    Ali Enayat had asked whether two halves of Disjunctive Correctness ([Formula: see text]) for the compositional truth predicate are conservative over Peano Arithmetic (PA). In this paper, we show that the principle “every true disjunction has a true disjunct” is equivalent to bounded induction for the compositional truth predicate and thus it is not conservative. On the other hand, the converse implication “any disjunction with a true disjunct is true” can be conservatively added to [Formula: see text]. The methods introduced (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Incompleteness Via Paradox and Completeness.Walter Dean - 2020 - Review of Symbolic Logic 13 (3):541-592.
    This paper explores the relationship borne by the traditional paradoxes of set theory and semantics to formal incompleteness phenomena. A central tool is the application of the Arithmetized Completeness Theorem to systems of second-order arithmetic and set theory in which various “paradoxical notions” for first-order languages can be formalized. I will first discuss the setting in which this result was originally presented by Hilbert & Bernays (1939) and also how it was later adapted by Kreisel (1950) and Wang (1955) in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Pathologies in satisfaction classes.Athar Abdul-Quader & Mateusz Łełyk - 2024 - Annals of Pure and Applied Logic 175 (2):103387.
    Download  
     
    Export citation  
     
    Bookmark   1 citation