Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Postponement of Reduction ad Absurdum and Glivenko’s Theorem, Revisited.Giulio Guerrieri & Alberto Naibo - 2019 - Studia Logica 107 (1):109-144.
    We study how to postpone the application of the reductio ad absurdum rule (RAA) in classical natural deduction. This technique is connected with two normalization strategies for classical logic, due to Prawitz and Seldin, respectively. We introduce a variant of Seldin’s strategy for the postponement of RAA, which induces a negative translation from classical to intuitionistic and minimal logic. Through this translation, Glivenko’s theorem from classical to intuitionistic and minimal logic is proven.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proof Theory for Positive Logic with Weak Negation.Marta Bílková & Almudena Colacito - 2020 - Studia Logica 108 (4):649-686.
    Proof-theoretic methods are developed for subsystems of Johansson’s logic obtained by extending the positive fragment of intuitionistic logic with weak negations. These methods are exploited to establish properties of the logical systems. In particular, cut-free complete sequent calculi are introduced and used to provide a proof of the fact that the systems satisfy the Craig interpolation property. Alternative versions of the calculi are later obtained by means of an appropriate loop-checking history mechanism. Termination of the new calculi is proved, and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Postponement of $$mathsf {}$$ and Glivenko’s Theorem, Revisited.Giulio Guerrieri & Alberto Naibo - 2019 - Studia Logica 107 (1):109-144.
    We study how to postpone the application of the reductio ad absurdum rule ) in classical natural deduction. This technique is connected with two normalization strategies for classical logic, due to Prawitz and Seldin, respectively. We introduce a variant of Seldin’s strategy for the postponement of \, which induces a negative translation from classical to intuitionistic and minimal logic. Through this translation, Glivenko’s theorem from classical to intuitionistic and minimal logic is proven.
    Download  
     
    Export citation  
     
    Bookmark   2 citations