Switch to: References

Add citations

You must login to add citations.
  1. The Naturality of Natural Deduction (II): On Atomic Polymorphism and Generalized Propositional Connectives.Paolo Pistone, Luca Tranchini & Mattia Petrolo - 2021 - Studia Logica 110 (2):545-592.
    In a previous paper we investigated the extraction of proof-theoretic properties of natural deduction derivations from their impredicative translation into System F. Our key idea was to introduce an extended equational theory for System F codifying at a syntactic level some properties found in parametric models of polymorphic type theory. A different approach to extract proof-theoretic properties of natural deduction derivations was proposed in a recent series of papers on the basis of an embedding of intuitionistic propositional logic into a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Russell-Prawitz embedding and the atomization of universal instantiation.José Espírito Santo & Gilda Ferreira - forthcoming - Logic Journal of the IGPL.
    Given the recent interest in the fragment of system $\mathbf{F}$ where universal instantiation is restricted to atomic formulas, a fragment nowadays named system ${\mathbf{F}}_{\textbf{at}}$, we study directly in system $\mathbf{F}$ new conversions whose purpose is to enforce that restriction. We show some benefits of these new atomization conversions: they help achieving strict simulation of proof reduction by means of the Russell–Prawitz embedding of $\textbf{IPC}$ into system $\mathbf{F}$, they are not stronger than a certain ‘dinaturality’ conversion known to generate a consistent (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Categorical Proof-theoretic Semantics.David Pym, Eike Ritter & Edmund Robinson - forthcoming - Studia Logica:1-38.
    In proof-theoretic semantics, model-theoretic validity is replaced by proof-theoretic validity. Validity of formulae is defined inductively from a base giving the validity of atoms using inductive clauses derived from proof-theoretic rules. A key aim is to show completeness of the proof rules without any requirement for formal models. Establishing this for propositional intuitionistic logic raises some technical and conceptual issues. We relate Sandqvist’s (complete) base-extension semantics of intuitionistic propositional logic to categorical proof theory in presheaves, reconstructing categorically the soundness and (...)
    Download  
     
    Export citation  
     
    Bookmark