Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Postponement of Reduction ad Absurdum and Glivenko’s Theorem, Revisited.Giulio Guerrieri & Alberto Naibo - 2019 - Studia Logica 107 (1):109-144.
    We study how to postpone the application of the reductio ad absurdum rule (RAA) in classical natural deduction. This technique is connected with two normalization strategies for classical logic, due to Prawitz and Seldin, respectively. We introduce a variant of Seldin’s strategy for the postponement of RAA, which induces a negative translation from classical to intuitionistic and minimal logic. Through this translation, Glivenko’s theorem from classical to intuitionistic and minimal logic is proven.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Jacobson Radical of a Propositional Theory.Giulio Fellin, Peter Schuster & Daniel Wessel - 2022 - Bulletin of Symbolic Logic 28 (2):163-181.
    Alongside the analogy between maximal ideals and complete theories, the Jacobson radical carries over from ideals of commutative rings to theories of propositional calculi. This prompts a variant of Lindenbaum’s Lemma that relates classical validity and intuitionistic provability, and the syntactical counterpart of which is Glivenko’s Theorem. The Jacobson radical in fact turns out to coincide with the classical deductive closure. As a by-product we obtain a possible interpretation in logic of the axioms-as-rules conservation criterion for a multi-conclusion Scott-style entailment (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Decidable variables for constructive logics.Satoru Niki - 2020 - Mathematical Logic Quarterly 66 (4):484-493.
    Ishihara's problem of decidable variables asks which class of decidable propositional variables is sufficient to warrant classical theorems in intuitionistic logic. We present several refinements to the class proposed by Ishii for this problem, which also allows the class to cover Glivenko's logic. We also treat the extension of the problem to minimal logic, suggesting a couple of new classes.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Postponement of $$mathsf {}$$ and Glivenko’s Theorem, Revisited.Giulio Guerrieri & Alberto Naibo - 2019 - Studia Logica 107 (1):109-144.
    We study how to postpone the application of the reductio ad absurdum rule ) in classical natural deduction. This technique is connected with two normalization strategies for classical logic, due to Prawitz and Seldin, respectively. We introduce a variant of Seldin’s strategy for the postponement of \, which induces a negative translation from classical to intuitionistic and minimal logic. Through this translation, Glivenko’s theorem from classical to intuitionistic and minimal logic is proven.
    Download  
     
    Export citation  
     
    Bookmark   2 citations