Switch to: References

Add citations

You must login to add citations.
  1. Alonzo Church.Oliver Marshall & Harry Deutsch - 2021 - Stanford Encyclopedia of Philosophy.
    Alonzo Church (1903–1995) was a renowned mathematical logician, philosophical logician, philosopher, teacher and editor. He was one of the founders of the discipline of mathematical logic as it developed after Cantor, Frege and Russell. He was also one of the principal founders of the Association for Symbolic Logic and the Journal of Symbolic Logic. The list of his students, mathematical and philosophical, is striking as it contains the names of renowned logicians and philosophers. In this article, we focus primarily on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Probabilities on Sentences in an Expressive Logic.Marcus Hutter, John W. Lloyd, Kee Siong Ng & William T. B. Uther - 2013 - Journal of Applied Logic 11 (4):386-420.
    Automated reasoning about uncertain knowledge has many applications. One difficulty when developing such systems is the lack of a completely satisfactory integration of logic and probability. We address this problem directly. Expressive languages like higher-order logic are ideally suited for representing and reasoning about structured knowledge. Uncertain knowledge can be modeled by using graded probabilities rather than binary truth-values. The main technical problem studied in this paper is the following: Given a set of sentences, each having some probability of being (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Terminating tableau systems for hybrid logic with difference and converse.Mark Kaminski & Gert Smolka - 2009 - Journal of Logic, Language and Information 18 (4):437-464.
    This paper contributes to the principled construction of tableau-based decision procedures for hybrid logic with global, difference, and converse modalities. We also consider reflexive and transitive relations. For converse-free formulas we present a terminating control that does not rely on the usual chain-based blocking scheme. Our tableau systems are based on a new model existence theorem.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the number of types.Miloš Kosterec - 2017 - Synthese 194 (12):5005-5021.
    In this paper, I investigate type theories from several perspectives. First, I present and elaborate the philosophical and technical motivations for these theories. I then offer a formal analysis of various TTs, focusing on the cardinality of the set of types contained in each. I argue that these TTs can be divided into four formal categories, which are derived from the cardinality of the set of their basic elementary types and the finiteness of the lengths of their molecular types. The (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Limits of Computation.Andrew Powell - 2022 - Axiomathes 32 (6):991-1011.
    This article provides a survey of key papers that characterise computable functions, but also provides some novel insights as follows. It is argued that the power of algorithms is at least as strong as functions that can be proved to be totally computable in type-theoretic translations of subsystems of second-order Zermelo Fraenkel set theory. Moreover, it is claimed that typed systems of the lambda calculus give rise naturally to a functional interpretation of rich systems of types and to a hierarchy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Eq-algebra-based Fuzzy Type Theory And Its Extensions.Vilém Novák - 2011 - Logic Journal of the IGPL 19 (3):512-542.
    In this paper, we introduce a new algebra called ‘EQ-algebra’, which is an alternative algebra of truth values for formal fuzzy logics. It is specified by replacing implication as the main operation with a fuzzy equality. Namely, EQ-algebra is a semilattice endowed with a binary operation of fuzzy equality and a binary operation of multiplication. Implication is derived from the fuzzy equality and it is not a residuation with respect to multiplication. Consequently, EQ-algebras overlap with residuated lattices but are not (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical Structures Within Simple Type Theory.Samuel González-Castillo - forthcoming - Studia Logica:1-30.
    We present an extension of simple type theory that incorporates types for any kind of mathematical structure (of any order). We further extend this system allowing isomorphic structures to be identified within these types thanks to some syntactical restrictions; for this purpose, we formally define what it means for two structures to be isomorphic. We model both extensions in NFU set theory in order to prove their relative consistency.
    Download  
     
    Export citation  
     
    Bookmark