Switch to: References

Add citations

You must login to add citations.
  1. Algebraic structures formalizing the logic with unsharp implication and negation.Ivan Chajda & Helmut Länger - forthcoming - Logic Journal of the IGPL.
    It is well-known that intuitionistic logics can be formalized by means of Heyting algebras, i.e. relatively pseudocomplemented semilattices. Within such algebras the logical connectives implication and conjunction are formalized as the relative pseudocomplement and the semilattice operation meet, respectively. If the Heyting algebra has a bottom element |$0$|⁠, then the relative pseudocomplement with respect to |$0$| is called the pseudocomplement and it is considered as the connective negation in this logic. Our idea is to consider an arbitrary meet-semilattice with |$0$| (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algebraic Properties of Paraorthomodular Posets.Ivan Chajda, Davide Fazio, Helmut Länger, Antonio Ledda & Jan Paseka - 2022 - Logic Journal of the IGPL 30 (5):840-869.
    Paraorthomodular posets are bounded partially ordered sets with an antitone involution induced by quantum structures arising from the logico-algebraic approach to quantum mechanics. The aim of the present work is starting a systematic inquiry into paraorthomodular posets theory both from algebraic and order-theoretic perspectives. On the one hand, we show that paraorthomodular posets are amenable of an algebraic treatment by means of a smooth representation in terms of bounded directoids with antitone involution. On the other, we investigate their order-theoretical features (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation