Switch to: References

Add citations

You must login to add citations.
  1. Molecular network analysis enhances understanding of the biology of mental disorders.Kay S. Grennan, Chao Chen, Elliot S. Gershon & Chunyu Liu - 2014 - Bioessays 36 (6):606-616.
    We provide an introduction to network theory, evidence to support a connection between molecular network structure and neuropsychiatric disease, and examples of how network approaches can expand our knowledge of the molecular bases of these diseases. Without systematic methods to derive their biological meanings and inter‐relatedness, the many molecular changes associated with neuropsychiatric disease, including genetic variants, gene expression changes, and protein differences, present an impenetrably complex set of findings. Network approaches can potentially help integrate and reconcile these findings, as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Shadows of complexity: what biological networks reveal about epistasis and pleiotropy.Anna L. Tyler, Folkert W. Asselbergs, Scott M. Williams & Jason H. Moore - 2009 - Bioessays 31 (2):220-227.
    Pleiotropy, in which one mutation causes multiple phenotypes, has traditionally been seen as a deviation from the conventional observation in which one gene affects one phenotype. Epistasis, or gene–gene interaction, has also been treated as an exception to the Mendelian one gene–one phenotype paradigm. This simplified perspective belies the pervasive complexity of biology and hinders progress toward a deeper understanding of biological systems. We assert that epistasis and pleiotropy are not isolated occurrences, but ubiquitous and inherent properties of biomolecular networks. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations