Switch to: References

Citations of:

Kreisel's 'Unwinding Program'

In Piergiorgio Odifreddi (ed.), Kreiseliana: About and Around Georg Kreisel. A K Peters. pp. 247--273 (1996)

Add citations

You must login to add citations.
  1. Number theory and elementary arithmetic.Jeremy Avigad - 2003 - Philosophia Mathematica 11 (3):257-284.
    is a fragment of first-order aritlimetic so weak that it cannot prove the totality of an iterated exponential fimction. Surprisingly, however, the theory is remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Gödel's functional interpretation and its use in current mathematics.Ulrich Kohlenbach - 2008 - Dialectica 62 (2):223–267.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A most artistic package of a jumble of ideas.Fernando Ferreira - 2008 - Dialectica 62 (2):205–222.
    In the course of ten short sections, we comment on Gödel's seminal dialectica paper of fifty years ago and its aftermath. We start by suggesting that Gödel's use of functionals of finite type is yet another instance of the realistic attitude of Gödel towards mathematics, in tune with his defense of the postulation of ever increasing higher types in foundational studies. We also make some observations concerning Gödel's recasting of intuitionistic arithmetic via the dialectica interpretation, discuss the extra principles that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Does reductive proof theory have a viable rationale?Solomon Feferman - 2000 - Erkenntnis 53 (1-2):63-96.
    The goals of reduction andreductionism in the natural sciences are mainly explanatoryin character, while those inmathematics are primarily foundational.In contrast to global reductionistprograms which aim to reduce all ofmathematics to one supposedly ``universal'' system or foundational scheme, reductive proof theory pursues local reductions of one formal system to another which is more justified in some sense. In this direction, two specific rationales have been proposed as aims for reductive proof theory, the constructive consistency-proof rationale and the foundational reduction rationale. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Understanding, formal verification, and the philosophy of mathematics.Jeremy Avigad - 2010 - Journal of the Indian Council of Philosophical Research 27:161-197.
    The philosophy of mathematics has long been concerned with deter- mining the means that are appropriate for justifying claims of mathemat- ical knowledge, and the metaphysical considerations that render them so. But, as of late, many philosophers have called attention to the fact that a much broader range of normative judgments arise in ordinary math- ematical practice; for example, questions can be interesting, theorems important, proofs explanatory, concepts powerful, and so on. The as- sociated values are often loosely classied as (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the no-counterexample interpretation.Ulrich Kohlenbach - 1999 - Journal of Symbolic Logic 64 (4):1491-1511.
    In [15], [16] G. Kreisel introduced the no-counterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated ε-substitution method (due to W. Ackermann), that for every theorem A (A prenex) of first-order Peano arithmetic PA one can find ordinal recursive functionals Φ A of order type 0 which realize the Herbrand normal form A H of A. Subsequently more perspicuous proofs of this fact via functional interpretation (combined with normalization) and cut-elimination were found. These proofs however do (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations