Switch to: References

Add citations

You must login to add citations.
  1. Inconsistent Models for Arithmetics with Constructible Falsity.Thomas Macaulay Ferguson - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Keisler–Shelah theorem for $\mathsf{QmbC}$ through semantical atomization.Thomas Macaulay Ferguson - 2020 - Logic Journal of the IGPL 28 (5):912-935.
    In this paper, we consider some contributions to the model theory of the logic of formal inconsistency $\mathsf{QmbC}$ as a reply to Walter Carnielli, Marcelo Coniglio, Rodrigo Podiacki and Tarcísio Rodrigues’ call for a ‘wider model theory.’ This call demands that we align the practices and techniques of model theory for logics of formal inconsistency as closely as possible with those employed in classical model theory. The key result is a proof that the Keisler–Shelah isomorphism theorem holds for $\mathsf{QmbC}$, i.e. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is strict finitism arbitrary?Nuno Maia - forthcoming - Philosophical Quarterly.
    Strict finitism posits a largest natural number. The view is usually thought to be objectionably arbitrary. After all, there seems to be no apparent reason as to why the natural numbers should ‘stop’ at a specific point and not a bit later on the natural line. Drawing on how arguments from arbitrariness are employed in mereology, I propose several ways of understanding this objection against strict finitism. No matter how it is understood, I argue that it is always found wanting.
    Download  
     
    Export citation  
     
    Bookmark