Switch to: References

Add citations

You must login to add citations.
  1. Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Provability logic.Rineke Verbrugge - 2008 - Stanford Encyclopedia of Philosophy.
    -/- Provability logic is a modal logic that is used to investigate what arithmetical theories can express in a restricted language about their provability predicates. The logic has been inspired by developments in meta-mathematics such as Gödel’s incompleteness theorems of 1931 and Löb’s theorem of 1953. As a modal logic, provability logic has been studied since the early seventies, and has had important applications in the foundations of mathematics. -/- From a philosophical point of view, provability logic is interesting because (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Strong completeness of provability logic for ordinal spaces.Juan P. Aguilera & David Fernández-Duque - 2017 - Journal of Symbolic Logic 82 (2):608-628.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The polytopologies of transfinite provability logic.David Fernández-Duque - 2014 - Archive for Mathematical Logic 53 (3-4):385-431.
    Provability logics are modal or polymodal systems designed for modeling the behavior of Gödel’s provability predicate and its natural extensions. If Λ is any ordinal, the Gödel-Löb calculus GLPΛ contains one modality [λ] for each λ < Λ, representing provability predicates of increasing strength. GLPω has no non-trivial Kripke frames, but it is sound and complete for its topological semantics, as was shown by Icard for the variable-free fragment and more recently by Beklemishev and Gabelaia for the full logic. In (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Topological completeness of the provability logic GLP.Lev Beklemishev & David Gabelaia - 2013 - Annals of Pure and Applied Logic 164 (12):1201-1223.
    Provability logic GLP is well-known to be incomplete w.r.t. Kripke semantics. A natural topological semantics of GLP interprets modalities as derivative operators of a polytopological space. Such spaces are called GLP-spaces whenever they satisfy all the axioms of GLP. We develop some constructions to build nontrivial GLP-spaces and show that GLP is complete w.r.t. the class of all GLP-spaces.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Hyperations, Veblen progressions and transfinite iteration of ordinal functions.David Fernández-Duque & Joost J. Joosten - 2013 - Annals of Pure and Applied Logic 164 (7-8):785-801.
    Ordinal functions may be iterated transfinitely in a natural way by taking pointwise limits at limit stages. However, this has disadvantages, especially when working in the class of normal functions, as pointwise limits do not preserve normality. To this end we present an alternative method to assign to each normal function f a family of normal functions Hyp[f]=〈fξ〉ξ∈OnHyp[f]=〈fξ〉ξ∈On, called its hyperation, in such a way that f0=idf0=id, f1=ff1=f and fα+β=fα∘fβfα+β=fα∘fβ for all α, β.Hyperations are a refinement of the Veblen hierarchy (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On Provability Logics with Linearly Ordered Modalities.Lev D. Beklemishev, David Fernández-Duque & Joost J. Joosten - 2014 - Studia Logica 102 (3):541-566.
    We introduce the logics GLP Λ, a generalization of Japaridze’s polymodal provability logic GLP ω where Λ is any linearly ordered set representing a hierarchy of provability operators of increasing strength. We shall provide a reduction of these logics to GLP ω yielding among other things a finitary proof of the normal form theorem for the variable-free fragment of GLP Λ and the decidability of GLP Λ for recursive orderings Λ. Further, we give a restricted axiomatization of the variable-free fragment (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The omega-rule interpretation of transfinite provability logic.David Fernández-Duque & Joost J. Joosten - 2018 - Annals of Pure and Applied Logic 169 (4):333-371.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Reflection algebras and conservation results for theories of iterated truth.Lev D. Beklemishev & Fedor N. Pakhomov - 2022 - Annals of Pure and Applied Logic 173 (5):103093.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Predicativity through transfinite reflection.Andrés Cordón-Franco, David Fernández-Duque, Joost J. Joosten & Francisco Félix Lara-martín - 2017 - Journal of Symbolic Logic 82 (3):787-808.
    Let T be a second-order arithmetical theory, Λ a well-order, λ < Λ and X ⊆ ℕ. We use $[\lambda |X]_T^{\rm{\Lambda }}\varphi$ as a formalization of “φ is provable from T and an oracle for the set X, using ω-rules of nesting depth at most λ”.For a set of formulas Γ, define predicative oracle reflection for T over Γ ) to be the schema that asserts that, if X ⊆ ℕ, Λ is a well-order and φ ∈ Γ, then$$\forall \,\lambda (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations