Switch to: References

Add citations

You must login to add citations.
  1. Varieties of Relevant S5.Shawn Standefer - 2023 - Logic and Logical Philosophy 32 (1):53–80.
    In classically based modal logic, there are three common conceptions of necessity, the universal conception, the equivalence relation conception, and the axiomatic conception. They provide distinct presentations of the modal logic S5, all of which coincide in the basic modal language. We explore these different conceptions in the context of the relevant logic R, demonstrating where they come apart. This reveals that there are many options for being an S5-ish extension of R. It further reveals a divide between the universal (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • One Variable Relevant Logics are S5ish.Nicholas Ferenz - 2024 - Journal of Philosophical Logic 53 (4):909-931.
    Here I show that the one-variable fragment of several first-order relevant logics corresponds to certain S5ish extensions of the underlying propositional relevant logic. In particular, given a fairly standard translation between modal and one-variable languages and a permuting propositional relevant logic L, a formula $$\mathcal {A}$$ A of the one-variable fragment is a theorem of LQ (QL) iff its translation is a theorem of L5 (L.5). The proof is model-theoretic. In one direction, semantics based on the Mares-Goldblatt [15] semantics for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Neighbourhood Semantics for Modal Relevant Logics.Nicholas Ferenz & Andrew Tedder - 2023 - Journal of Philosophical Logic 52 (1):145-181.
    In this paper, we investigate neighbourhood semantics for modal extensions of relevant logics. In particular, we combine the neighbourhood interpretation of the relevant implication (and related connectives) with a neighbourhood interpretation of modal operators. We prove completeness for a range of systems and investigate the relations between neighbourhood models and relational models, setting out a range of augmentation conditions for the various relations and operations.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Neighbourhood Semantics for Quantified Relevant Logics.Andrew Tedder & Nicholas Ferenz - 2022 - Journal of Philosophical Logic 51 (3):457-484.
    The Mares-Goldblatt semantics for quantified relevant logics have been developed for first-order extensions of R, and a range of other relevant logics and modal extensions thereof. All such work has taken place in the the ternary relation semantic framework, most famously developed by Sylvan and Meyer. In this paper, the Mares-Goldblatt technique for the interpretation of quantifiers is adapted to the more general neighbourhood semantic framework, developed by Sylvan, Meyer, and, more recently, Goble. This more algebraic semantics allows one to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • First-Order Relevant Reasoners in Classical Worlds.Nicholas Ferenz - 2024 - Review of Symbolic Logic 17 (3):793-818.
    Sedlár and Vigiani [18] have developed an approach to propositional epistemic logics wherein (i) an agent’s beliefs are closed under relevant implication and (ii) the agent is located in a classical possible world (i.e., the non-modal fragment is classical). Here I construct first-order extensions of these logics using the non-Tarskian interpretation of the quantifiers introduced by Mares and Goldblatt [12], and later extended to quantified modal relevant logics by Ferenz [6]. Modular soundness and completeness are proved for constant domain semantics, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An Algebraic View of the Mares-Goldblatt Semantics.Andrew Tedder - 2024 - Journal of Philosophical Logic 53 (2):331-349.
    An algebraic characterisation is given of the Mares-Goldblatt semantics for quantified extensions of relevant and modal logics. Some features of this more general semantic framework are investigated, and the relations to some recent work in algebraic semantics for quantified extensions of non-classical logics are considered.
    Download  
     
    Export citation  
     
    Bookmark  
  • Identity in Mares-Goldblatt Models for Quantified Relevant Logic.Shawn Standefer - 2021 - Journal of Philosophical Logic 50 (6):1389-1415.
    Mares and Goldblatt, 163–187, 2006) provided an alternative frame semantics for two quantified extensions of the relevant logic R. In this paper, I show how to extend the Mares-Goldblatt frames to accommodate identity. Simpler frames are provided for two zero-order logics en route to the full logic in order to clarify what is needed for identity and substitution, as opposed to quantification. I close with a comparison of this work with the Fine-Mares models for relevant logics with identity and a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations