Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Some complete ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-powers of a one-counter language, for any Borel class of finite rank. [REVIEW]Dominique Lecomte & Olivier Finkel - 2021 - Archive for Mathematical Logic 60 (1-2):161-187.
    We prove that, for any natural number n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}, we can find a finite alphabet Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} and a finitary language L over Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} accepted by a one-counter automaton, such that the ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-power L∞:={w0w1…∈Σω∣∀i∈ωwi∈L}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Some complete $$\omega $$-powers of a one-counter language, for any Borel class of finite rank.Olivier Finkel & Dominique Lecomte - 2020 - Archive for Mathematical Logic 60 (1-2):161-187.
    We prove that, for any natural number \, we can find a finite alphabet \ and a finitary language L over \ accepted by a one-counter automaton, such that the \-power $$\begin{aligned} L^\infty :=\{ w_0w_1\ldots \in \Sigma ^\omega \mid \forall i\in \omega ~~w_i\in L\} \end{aligned}$$is \-complete. We prove a similar result for the class \.
    Download  
     
    Export citation  
     
    Bookmark  
  • On some sets of dictionaries whose ω ‐powers have a given.Olivier Finkel - 2010 - Mathematical Logic Quarterly 56 (5):452-460.
    A dictionary is a set of finite words over some finite alphabet X. The omega-power of a dictionary V is the set of infinite words obtained by infinite concatenation of words in V. Lecomte studied in [Omega-powers and descriptive set theory, JSL 2005] the complexity of the set of dictionaries whose associated omega-powers have a given complexity. In particular, he considered the sets $W({bfSi}^0_{k})$ (respectively, $W({bfPi}^0_{k})$, $W({bfDelta}_1^1)$) of dictionaries $V subseteq 2^star$ whose omega-powers are ${bfSi}^0_{k}$-sets (respectively, ${bfPi}^0_{k}$-sets, Borel sets). In (...)
    Download  
     
    Export citation  
     
    Bookmark