- A Catalog ofWeak Many-Valued Modal Axioms and their Corresponding Frame Classes.Costas D. Koutras - 2003 - Journal of Applied Non-Classical Logics 13 (1):47-71.details
|
|
Many-valued modal logics: A simple approach: Many-valued modal logics: A simple approach.Graham Priest - 2008 - Review of Symbolic Logic 1 (2):190-203.details
|
|
Hybrid Logic and its Proof-Theory.Torben Braüner - 2010 - Dordrecht and New York: Springer.details
|
|
Many-valued hybrid logic.Jens Ulrik Hansen, Thomas Bolander & Torben Braüner - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 111-132.details
|
|
A Duality for the Algebras of a Łukasiewicz n + 1-valued Modal System.Bruno Teheux - 2007 - Studia Logica 87 (1):13-36.details
|
|
On a Simple 3-valued Modal Language and a 3-valued Logic of ‘not-fully-justified’ Belief.Costas Koutras, Christos Nomikos & Pavlos Peppas - 2008 - Logic Journal of the IGPL 16 (6):591-604.details
|
|
Frame constructions, truth invariance and validity preservation in many-valued modal logic.Pantelis E. Eleftheriou & Costas D. Koutras - 2005 - Journal of Applied Non-Classical Logics 15 (4):367-388.details
|
|
General approach to many valued Kripke models.Szymon Frankowski - 2006 - Bulletin of the Section of Logic 35 (1):11-26.details
|
|
(1 other version)Bisimulations and Boolean Vectors.Melvin Fitting - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 97-125.details
|
|
Encoding modal logics in logical frameworks.Arnon Avron, Furio Honsell, Marino Miculan & Cristian Paravano - 1998 - Studia Logica 60 (1):161-208.details
|
|
How True It Is = Who Says It’s True.Melvin Fitting - 2009 - Studia Logica 91 (3):335-366.details
|
|
Propositional dynamic logic for searching games with errors.Bruno Teheux - 2014 - Journal of Applied Logic 12 (4):377-394.details
|
|
Definable classes of many valued Kripke frames.Szymon Frankowski - 2006 - Bulletin of the Section of Logic 35 (1):27-36.details
|
|