Switch to: References

Add citations

You must login to add citations.
  1. An intuitionistic formula hierarchy based on high‐school identities.Taus Brock-Nannestad & Danko Ilik - 2019 - Mathematical Logic Quarterly 65 (1):57-79.
    We revisit the notion of intuitionistic equivalence and formal proof representations by adopting the view of formulas as exponential polynomials. After observing that most of the invertible proof rules of intuitionistic (minimal) propositional sequent calculi are formula (i.e., sequent) isomorphisms corresponding to the high‐school identities, we show that one can obtain a more compact variant of a proof system, consisting of non‐invertible proof rules only, and where the invertible proof rules have been replaced by a formula normalization procedure. Moreover, for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Extensions of Kripke models.Mostafa Zaare - 2017 - Logic Journal of the IGPL 25 (5):697-699.
    Download  
     
    Export citation  
     
    Bookmark  
  • Homomorphisms and chains of Kripke models.Morteza Moniri & Mostafa Zaare - 2011 - Archive for Mathematical Logic 50 (3-4):431-443.
    In this paper we define a suitable version of the notion of homomorphism for Kripke models of intuitionistic first-order logic and characterize theories that are preserved under images and also those that are preserved under inverse images of homomorphisms. Moreover, we define a notion of union of chain for Kripke models and define a class of formulas that is preserved in unions of chains. We also define similar classes of formulas and investigate their behavior in Kripke models. An application to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Constructive Ackermann's interpretation.Hanul Jeon - 2022 - Annals of Pure and Applied Logic 173 (5):103086.
    Download  
     
    Export citation  
     
    Bookmark  
  • Prenex normalization and the hierarchical classification of formulas.Makoto Fujiwara & Taishi Kurahashi - 2023 - Archive for Mathematical Logic 63 (3):391-403.
    Akama et al. [1] introduced a hierarchical classification of first-order formulas for a hierarchical prenex normal form theorem in semi-classical arithmetic. In this paper, we give a justification for the hierarchical classification in a general context of first-order theories. To this end, we first formalize the standard transformation procedure for prenex normalization. Then we show that the classes $$\textrm{E}_k$$ and $$\textrm{U}_k$$ introduced in [1] are exactly the classes induced by $$\Sigma _k$$ and $$\Pi _k$$ respectively via the transformation procedure in (...)
    Download  
     
    Export citation  
     
    Bookmark