Switch to: References

Add citations

You must login to add citations.
  1. Classifying equivalence relations in the Ershov hierarchy.Nikolay Bazhenov, Manat Mustafa, Luca San Mauro, Andrea Sorbi & Mars Yamaleev - 2020 - Archive for Mathematical Logic 59 (7-8):835-864.
    Computably enumerable equivalence relations received a lot of attention in the literature. The standard tool to classify ceers is provided by the computable reducibility \. This gives rise to a rich degree structure. In this paper, we lift the study of c-degrees to the \ case. In doing so, we rely on the Ershov hierarchy. For any notation a for a non-zero computable ordinal, we prove several algebraic properties of the degree structure induced by \ on the \ equivalence relations. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Effective Inseparability, Lattices, and Preordering Relations.Uri Andrews & Andrea Sorbi - 2021 - Review of Symbolic Logic 14 (4):838-865.
    We study effectively inseparable (abbreviated as e.i.) prelattices (i.e., structures of the form$L = \langle \omega, \wedge, \vee,0,1,{ \le _L}\rangle$whereωdenotes the set of natural numbers and the following four conditions hold: (1)$\wedge, \vee$are binary computable operations; (2)${ \le _L}$is a computably enumerable preordering relation, with$0{ \le _L}x{ \le _L}1$for everyx; (3) the equivalence relation${ \equiv _L}$originated by${ \le _L}$is a congruence onLsuch that the corresponding quotient structure is a nontrivial bounded lattice; (4) the${ \equiv _L}$-equivalence classes of 0 and 1 (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Investigating the Computable Friedman–Stanley Jump.Uri Andrews & Luca San Mauro - 2024 - Journal of Symbolic Logic 89 (2):918-944.
    The Friedman–Stanley jump, extensively studied by descriptive set theorists, is a fundamental tool for gauging the complexity of Borel isomorphism relations. This paper focuses on a natural computable analog of this jump operator for equivalence relations on $\omega $, written ${\dotplus }$, recently introduced by Clemens, Coskey, and Krakoff. We offer a thorough analysis of the computable Friedman–Stanley jump and its connections with the hierarchy of countable equivalence relations under the computable reducibility $\leq _c$. In particular, we show that this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Initial Segments of the Degrees of Ceers.Uri Andrews & Andrea Sorbi - 2022 - Journal of Symbolic Logic 87 (3):1260-1282.
    It is known that every non-universal self-full degree in the structure of the degrees of computably enumerable equivalence relations (ceers) under computable reducibility has exactly one strong minimal cover. This leaves little room for embedding wide partial orders as initial segments using self-full degrees. We show that considerably more can be done by staying entirely inside the collection of non-self-full degrees. We show that the poset can be embedded as an initial segment of the degrees of ceers with infinitely many (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Word problems and ceers.Valentino Delle Rose, Luca San Mauro & Andrea Sorbi - 2020 - Mathematical Logic Quarterly 66 (3):341-354.
    This note addresses the issue as to which ceers can be realized by word problems of computably enumerable (or, simply, c.e.) structures (such as c.e. semigroups, groups, and rings), where being realized means to fall in the same reducibility degree (under the notion of reducibility for equivalence relations usually called “computable reducibility”), or in the same isomorphism type (with the isomorphism induced by a computable function), or in the same strong isomorphism type (with the isomorphism induced by a computable permutation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The theory of ceers computes true arithmetic.Uri Andrews, Noah Schweber & Andrea Sorbi - 2020 - Annals of Pure and Applied Logic 171 (8):102811.
    We show that the theory of the partial order of computably enumerable equivalence relations (ceers) under computable reduction is 1-equivalent to true arithmetic. We show the same result for the structure comprised of the dark ceers and the structure comprised of the light ceers. We also show the same for the structure of L-degrees in the dark, light, or complete structure. In each case, we show that there is an interpretable copy of (N, +, \times) .
    Download  
     
    Export citation  
     
    Bookmark   3 citations