Switch to: References

Add citations

You must login to add citations.
  1. Organic and tight.J. Cummings, M. Foreman & E. Schimmerling - 2009 - Annals of Pure and Applied Logic 160 (1):22-32.
    We define organic sets and organically stationary sequences, which generalize tight sets and tightly stationary sequences respectively. We show that there are stationary many inorganic sets and stationary many sets that are organic but not tight. Working in the Constructible Universe, we give a characterization of organic and tight sets in terms of fine structure. We answer a related question posed in [J. Cummings, M. Foreman, M. Magidor, Canonical structure in the universe of set theory: Part two, Ann. Pure Appl. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • In search of ultimate- L the 19th midrasha mathematicae lectures.W. Hugh Woodin - 2017 - Bulletin of Symbolic Logic 23 (1):1-109.
    We give a fairly complete account which first shows that the solution to the inner model problem for one supercompact cardinal will yield an ultimate version ofLand then shows that the various current approaches to inner model theory must be fundamentally altered to provide that solution.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • μ-clubs of P(λ): Paradise in heaven.Pierre Matet - 2025 - Annals of Pure and Applied Logic 176 (1):103497.
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • Ideals on $${P_{\kappa}(\lambda)}$$ P κ ( λ ) associated with games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):291-328.
    We study normal ideals on Pκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P_{\kappa} }$$\end{document} that are defined in terms of games of uncountable length.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A cofinality-preserving small forcing may introduce a special Aronszajn tree.Assaf Rinot - 2009 - Archive for Mathematical Logic 48 (8):817-823.
    It is relatively consistent with the existence of two supercompact cardinals that a special Aronszajn tree of height ${\aleph_{\omega_1+1}}$ is introduced by a cofinality-preserving forcing of size ${\aleph_3}$.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Good and bad points in scales.Chris Lambie-Hanson - 2014 - Archive for Mathematical Logic 53 (7):749-777.
    We address three questions raised by Cummings and Foreman regarding a model of Gitik and Sharon. We first analyze the PCF-theoretic structure of the Gitik–Sharon model, determining the extent of good and bad scales. We then classify the bad points of the bad scales existing in both the Gitik–Sharon model and other models containing bad scales. Finally, we investigate the ideal of subsets of singular cardinals of countable cofinality carrying good scales.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Aronszajn trees and failure of the singular cardinal hypothesis.Itay Neeman - 2009 - Journal of Mathematical Logic 9 (1):139-157.
    The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile the two. We prove (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Bounded stationary reflection II.Chris Lambie-Hanson - 2017 - Annals of Pure and Applied Logic 168 (1):50-71.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)We prove covering theorems for K, where K is the core model below the sharp for a strong cardinal, and give an application to stationary set reflection.David Asperó, John Krueger & Yasuo Yoshinobu - 2010 - Annals of Pure and Applied Logic 161 (1):94-108.
    We present several forcing posets for adding a non-reflecting stationary subset of Pω1, where λ≥ω2. We prove that PFA is consistent with dense non-reflection in Pω1, which means that every stationary subset of Pω1 contains a stationary subset which does not reflect to any set of size 1. If λ is singular with countable cofinality, then dense non-reflection in Pω1 follows from the existence of squares.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Canonical structure in the universe of set theory: Part two.James Cummings, Matthew Foreman & Menachem Magidor - 2006 - Annals of Pure and Applied Logic 142 (1):55-75.
    We prove a number of consistency results complementary to the ZFC results from our paper [J. Cummings, M. Foreman, M. Magidor, Canonical structure in the universe of set theory: part one, Annals of Pure and Applied Logic 129 211–243]. We produce examples of non-tightly stationary mutually stationary sequences, sequences of cardinals on which every sequence of sets is mutually stationary, and mutually stationary sequences not concentrating on a fixed cofinality. We also give an alternative proof for the consistency of the (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The independence of $$\mathsf {GCH}$$ GCH and a combinatorial principle related to Banach–Mazur games.Will Brian, Alan Dow & Saharon Shelah - 2021 - Archive for Mathematical Logic 61 (1):1-17.
    It was proved recently that Telgársky’s conjecture, which concerns partial information strategies in the Banach–Mazur game, fails in models of \. The proof introduces a combinatorial principle that is shown to follow from \, namely: \::Every separative poset \ with the \-cc contains a dense sub-poset \ such that \ for every \. We prove this principle is independent of \ and \, in the sense that \ does not imply \, and \ does not imply \ assuming the consistency (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rado’s Conjecture and its Baire version.Jing Zhang - 2019 - Journal of Mathematical Logic 20 (1):1950015.
    Rado’s Conjecture is a compactness/reflection principle that says any nonspecial tree of height ω1 has a nonspecial subtree of size ℵ1. Though incompatible with Martin’s Axiom, Rado’s Conjecture turns out to have many interesting consequences that are also implied by certain forcing axioms. In this paper, we obtain consistency results concerning Rado’s Conjecture and its Baire version. In particular, we show that a fragment of PFA, which is the forcing axiom for Baire Indestructibly Proper forcings, is compatible with the Baire (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Notes on Singular Cardinal Combinatorics.James Cummings - 2005 - Notre Dame Journal of Formal Logic 46 (3):251-282.
    We present a survey of combinatorial set theory relevant to the study of singular cardinals and their successors. The topics covered include diamonds, squares, club guessing, forcing axioms, and PCF theory.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Canonical structure in the universe of set theory: part one.James Cummings, Matthew Foreman & Menachem Magidor - 2004 - Annals of Pure and Applied Logic 129 (1-3):211-243.
    We start by studying the relationship between two invariants isolated by Shelah, the sets of good and approachable points. As part of our study of these invariants, we prove a form of “singular cardinal compactness” for Jensen's square principle. We then study the relationship between internally approachable and tight structures, which parallels to a certain extent the relationship between good and approachable points. In particular we characterise the tight structures in terms of PCF theory and use our characterisation to prove (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Almost free groups and Ehrenfeucht–Fraı̈ssé games for successors of singular cardinals.Saharon Shelah & Pauli Väisänen - 2002 - Annals of Pure and Applied Logic 118 (1-2):147-173.
    We strengthen nonstructure theorems for almost free Abelian groups by studying long Ehrenfeucht–Fraı̈ssé games between a fixed group of cardinality λ and a free Abelian group. A group is called ε -game-free if the isomorphism player has a winning strategy in the game of length ε ∈ λ . We prove for a large set of successor cardinals λ = μ + the existence of nonfree -game-free groups of cardinality λ . We concentrate on successors of singular cardinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Some Problems in Singular Cardinals Combinatorics.Matthew Foreman - 2005 - Notre Dame Journal of Formal Logic 46 (3):309-322.
    This paper attempts to present and organize several problems in the theory of Singular Cardinals. The most famous problems in the area (bounds for the ℶ-function at singular cardinals) are well known to all mathematicians with even a rudimentary interest in set theory. However, it is less well known that the combinatorics of singular cardinals is a thriving area with results and problems that do not depend on a solution of the Singular Cardinals Hypothesis. We present here an annotated collection (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fragility and indestructibility II.Spencer Unger - 2015 - Annals of Pure and Applied Logic 166 (11):1110-1122.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On Ideals Related to I[λ].Todd Eisworth - 2005 - Notre Dame Journal of Formal Logic 46 (3):301-307.
    We describe a recipe for generating normal ideals on successors of singular cardinals. We show that these ideals are related to many weakenings of □ that have appeared in the literature. Our main purpose, however, is to provide an organized list of open questions related to these ideals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • When P(λ) (vaguely) resembles κ.Pierre Matet - 2021 - Annals of Pure and Applied Logic 172 (2):102874.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Scales with various kinds of good points.Pierre Matet - 2018 - Mathematical Logic Quarterly 64 (4-5):349-370.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Forcing axioms, supercompact cardinals, singular cardinal combinatorics.Matteo Viale - 2008 - Bulletin of Symbolic Logic 14 (1):99-113.
    The purpose of this communication is to present some recent advances on the consequences that forcing axioms and large cardinals have on the combinatorics of singular cardinals. I will introduce a few examples of problems in singular cardinal combinatorics which can be fruitfully attacked using ideas and techniques coming from the theory of forcing axioms and then translate the results so obtained in suitable large cardinals properties.The first example I will treat is the proof that the proper forcing axiom PFA (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)On the weak Freese-Nation property of complete Boolean algebras.Sakaé Fuchino, Stefan Geschke, Saharon Shelah & Lajos Soukup - 2001 - Annals of Pure and Applied Logic 110 (1-3):89-105.
    The following results are proved: In a model obtained by adding ℵ 2 Cohen reals , there is always a c.c.c. complete Boolean algebra without the weak Freese-Nation property. Modulo the consistency strength of a supercompact cardinal , the existence of a c.c.c. complete Boolean algebra without the weak Freese-Nation property is consistent with GCH. If a weak form of □ μ and cof =μ + hold for each μ >cf= ω , then the weak Freese-Nation property of 〈 P (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • □ On the singular cardinals.James Cummings & Sy-David Friedman - 2008 - Journal of Symbolic Logic 73 (4):1307-1314.
    We give upper and lower bounds for the consistency strength of the failure of a combinatorial principle introduced by Jensen. "Square on singular cardinals".
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Dense non-reflection for stationary collections of countable sets.David Asperó, John Krueger & Yasuo Yoshinobu - 2010 - Annals of Pure and Applied Logic 161 (1):94-108.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On weak square, approachability, the tree property, and failures of SCH in a choiceless context.Arthur W. Apter - 2020 - Mathematical Logic Quarterly 66 (1):115-120.
    We show that the consistency of the theories “ holds below ” + “there is an injection ” + “both and fail” and + “ holds below ” + “there is an injection ” + “ satisfies the tree property” follow from the appropriate supercompactness hypotheses. These provide answers in a choiceless context to certain long‐standing open questions concerning, weak square, approachability, and the tree property. There is nothing special about, and the injection into can be from any ordinal λ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An L-like model containing very large cardinals.Arthur W. Apter & James Cummings - 2008 - Archive for Mathematical Logic 47 (1):65-78.
    We force and construct a model in which level by level equivalence between strong compactness and supercompactness holds, along with a strong form of diamond and a version of square consistent with supercompactness. This generalises a result due to the first author. There are no restrictions in our model on the structure of the class of supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation